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Chapter 1

Sequents

This chapter presents the language and sequent calculus of second-order Linear
Logic and the basic properties of this sequent calculus. The core of the chapter
uses the two-sided system with negation as a proper connective; the one-sided
system, often used as the definition of Linear Logic, is presented later and used
for describing the cut elimination procedure.

1.1 Formulas

The formulas of Linear Logic are defined by Table 1.1. Capital Latin letters
A, B, C will range over the set of formulas. Atomic formulas, written α, β, γ,
are predicates of the form p(t1, . . . , tn), where the ti are terms from some first-
order language. The predicate symbol p may be either a predicate constant
or a second-order variable, we call n the arity of p. By convention we will
write first-order variables as x, y, z, second-order variables as X,Y, Z, and ξ for
a variable of arbitrary order.

Each line of Table 1.1 (except the first one) corresponds to a particular class
of connectives, and each class consists in a pair of connectives (which are said to
be dual of each other). Those in the left column are called positive and those

Positive Negative Class

α atom A⊥ negation
A⊗B tensor A`B par multiplicatives

1 one ⊥ bottom multiplicative units
A⊕B plus A&B with additives

0 zero ⊤ top additive units
!A of course ?A why not exponentials
∃ξ.A there exists ∀ξ.A for all quantifiers

Table 1.1: Formulas of Linear Logic.
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10 CHAPTER 1. SEQUENTS

in the right column are called negative (see Section 1.6 for practical impacts of
the notion of polarity). The atoms have no predefined polarity and negation
changes the polarity of the negated formula. The tensor and with connectives
have conjunctive flavour while par and plus have disjunctive flavour. Indeed
mapping ⊗ and & to ∧ and ` and ⊕ to ∨ turns linear provable formulas into
valid classical formulas (see Section 1.8). The exponential connectives are also
called modalities, and traditionally read of course A (or bang A) for !A and
why not A for ?A. Quantifiers may apply to first- or second-order variables.

The linear implication and the linear equivalence are presented as defined
multiplicative connectives, by A⊸ B := A⊥`B and A˛ B := (A⊥`B)⊗(A`
B⊥), respectively. In order to underline the symmetries acting on Linear Logic
formulas, we consider the implication and equivalence as defined connectives,
similarly to the decomposition A→ B = ¬A ∨B in classical logic. Notice that
A⊸ B and A˛ B are defined by the multiplicative connectives, in fact their
additive versions are not suitable, for example the disjunction A⊥ ⊕ A is not
provable for all formula A.

Free and bound variables and first-order substitution A[t/x] are defined
in the standard way. Formulas are always considered up to renaming of
bound names. If A is a formula, X is a second-order variable of arity n and
B[x1, . . . , xn] is a formula with variables among xi, then the formula A[B/X]
is A where every atom X(t1, . . . , tn) is replaced by B[t1/x1, . . . , tn/xn]. For
example, (∀y.X(y))[∀z.p(x, z)/X] = ∀y.∀z.p(y, z).

1.2 Sequents and proofs

A sequent is an expression Γ ⊢ ∆ where Γ and ∆ are finite sequences of
formulas. For a sequence Γ = A1, . . . , An, the notation $Γ, for $ ∈ {?, !},
represents the sequence $A1, . . . , $An, and similarly Γ⊥ represents the sequence
A⊥

1 , . . . , A
⊥
n .

Table 1.2 gives a picture of the LL inference rules together with the labelling
of the inference name. These latter are oriented top-down: the sequents at the
top of an inference rule are called premises and the one at the bottom is called
conclusion. The arity of a rule is the number of its premises, for example the
axiom has arity 0, the cut has arity 2 and the two rules introducing the negation
have arity 1. The occurrences of a formula that are explicit in the picture of
an inference rule in Table 1.2 are called active, the other occurrences being
passive. The passive occurrences provide the context of the rule. For the
rules introducing a new occurrence of a connective, the occurrence of formula
containing this connective is called the principal occurrence of the rule. A
principal occurrence is unique in a rule and always occurs in the concusion.
For example in the right introduction rule of the tensor connective, the explicit
occurrences of A and B are active in the premises and the explicit occurrence
of A ⊗ B is active in the conclusion (it is moreover the principal occurrence),
while all occurrences of the formulas in the sequences Γ,Γ′,∆ and ∆′ are passive
(they constitute the context).
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Identity and negation group

(ax )
A ⊢ A

Γ ⊢ A,∆ Γ′, A ⊢ ∆′
(cut)

Γ,Γ′ ⊢ ∆,∆′

Γ ⊢ A,∆
(nL)

Γ, A⊥ ⊢ ∆

Γ, A ⊢ ∆
(nR)

Γ ⊢ A⊥,∆

Multiplicative group

Γ, A,B ⊢ ∆
(⊗L)

Γ, A⊗B ⊢ ∆

Γ ⊢ ∆
(1L)

Γ,1 ⊢ ∆

Γ ⊢ A,∆ Γ′ ⊢ B,∆′
(⊗R)

Γ,Γ′ ⊢ A⊗B,∆,∆′ (1R)⊢ 1

Γ, A ⊢ ∆ Γ′, B ⊢ ∆′
(`L)

Γ,Γ′, A`B ⊢ ∆,∆′ (⊥L)⊥ ⊢
Γ ⊢ A,B,∆

(`R)
Γ ⊢ A`B,∆

Γ ⊢ ∆
(⊥R)

Γ ⊢ ⊥,∆

Additive group
Γ, A ⊢ ∆ Γ, B ⊢ ∆

(⊕L)
Γ, A⊕B ⊢ ∆

(0L)
Γ,0 ⊢ ∆

Γ ⊢ Ai,∆
(⊕Ri)

Γ ⊢ A1 ⊕A2,∆

Γ, Ai ⊢ ∆
(&Li)

Γ, A1 &A2 ⊢ ∆

Γ ⊢ A,∆ Γ ⊢ B,∆
(&R)

Γ ⊢ A&B,∆
(⊤R)

Γ ⊢ ⊤,∆

Quantifier group

In the rules (∃1L) (resp. (∃2L)) and (∀1R) (resp. (∀2R)),
the variable x (resp. X) must not occur free in Γ nor in ∆.

Γ, A ⊢ ∆
(∃1L)

Γ,∃x.A ⊢ ∆

Γ, A ⊢ ∆
(∃2L)

Γ,∃X.A ⊢ ∆

Γ ⊢ A[t/x],∆
(∃1R)

Γ ⊢ ∃x.A,∆
Γ ⊢ A[B/X],∆

(∃2R)
Γ ⊢ ∃X.A,∆

Γ, A[t/x] ⊢ ∆
(∀1L)

Γ,∀x.A ⊢ ∆

Γ, A[B/X] ⊢ ∆
(∀2L)

Γ,∀X.A ⊢ ∆

Γ ⊢ A,∆
(∀1R)

Γ ⊢ ∀x.A,∆
Γ ⊢ A,∆

(∀2R)
Γ ⊢ ∀X.A,∆

Exponential group
Γ, A ⊢ ∆

(!L)
Γ, !A ⊢ ∆

!Γ ⊢ A, ?∆
(!R)

!Γ ⊢ !A, ?∆

Γ ⊢ A,∆
(?R)

Γ ⊢ ?A,∆

!Γ, A ⊢ ?∆
(?L)

!Γ, ?A ⊢ ?∆

Structural group
Γ1, A,B,Γ2 ⊢ ∆

(exL)
Γ1, B,A,Γ2 ⊢ ∆

Γ ⊢ ∆1, A,B,∆2
(exR)

Γ ⊢ ∆1, B,A,∆2

Γ ⊢ ∆
(wL)

Γ, !A ⊢ ∆

Γ ⊢ ∆
(wR)

Γ ⊢ ?A,∆

Γ, !A, !A ⊢ ∆
(cL)

Γ, !A ⊢ ∆

Γ ⊢ ?A, ?A,∆
(cR)

Γ ⊢ ?A,∆

Table 1.2: Inference rules for two-sided Linear Logic sequent calculus
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Observe that the rules (∃1L) and (∃2L) (resp. (∀1R) and (∀2R)) differ only by
the order of the quantified variable: we may write (∃L) (resp. (∀R)) for either
rule. Similarly the rules (∃1R) and (∃2R) (resp. (∀1L) and (∀2L)) differ only by the
order of the quantified variable and the substitution performed in the premise:
again, we may write (∃R) (resp. (∀L)) for either rule, when the order is either
irrelevant or clear from the context.

The left (resp. right) introduction rule for the ! (resp. ?) modality is called
dereliction, and the right (resp. left) introduction rule for the ! (resp. ?) modality
is called promotion. Notice that the promotion rules require that all passive
formulas have a suitable exponential modality. Applying the right (resp. left)
introduction rule for the ! or ∀ (resp. ? or ∃) connective thus requires constraints
on the context. These rules are called contextual.

Proofs are labelled trees with nodes labelled with inference rules and edges
labelled by sequents1.

Alternatively, an LL proof of a sequent s can be defined inductively as the
data of

1. an instance of an n-ary inference rule of Table 1.2,
s1 . . . sn

(r)
s

, and

2. a family of n proofs (πi)1≤i≤n, such that πi is a proof of si for 1 ≤ i ≤ n,

that we write
π1 . . . πn

(r)
s

(or
π1
s1 . . .

πn
sn

(r)
s

when one wants to

emphasize the premises of the last rule).
Notation 1.2.1. We shall write π : Γ ⊢ ∆ to signify that π is a proof with
conclusion Γ ⊢ ∆.

In a proof considered as a tree, the leaves are given by applications of the
rules (ax ), (1R), (⊥L) and (⊤R). By allowing arbitrary sequents as (non-
justified) leaves, one gets the notion of open proof (or partial proof). These
special leaves are called holes (with the idea that plugging a proof with appro-
priate concluson in each of the holes of an open proof gives you a proof). An
open proof with holes Γ1 ⊢ ∆1, . . . , Γn ⊢ ∆n and conclusion Γ ⊢ ∆ is also called
a derivation of Γ ⊢ ∆ from Γ1 ⊢ ∆1, . . . , Γn ⊢ ∆n.

Definition 1.2.2 (Provability, admissibility, derivability). A sequent is prov-
able if there exists a proof with this sequent as a conclusion. A formula is
provable if the singleton sequent ( ⊢ A) of this formula is provable. An infer-
ence rule:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆

is admissible (drawn with a dashed line) from a set of rules S if the provability
of all its premises (using S) implies the provability of its conclusion (using S).
The inference rule:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆
1In a formal definition, the root of the tree is a node with no label (or a with a special

conclusion label). The associated edge is called the conclusion of the proof.
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is said derivable (drawn with a double line) from a set of rules S if there exists
a derivation of Γ ⊢ ∆ from the premises Γ1 ⊢ ∆1, . . . , Γn ⊢ ∆n using only the
rules in S.

Notice that the derivability of an inference rule implies its admissibility, but
the converse does not hold. For example the cut rule is admissible from the
other rules of Figure 1.2, as we will prove in the next sections, but it is not
derivable.

Example 1.2.3. The inference rule ⊢ A⊗B
⊢ A

is admissible but not derivable.

Note the fundamental fact that the exchange structural rule is free on every
formula, while the left (resp. right) contraction and weakening require the active
formulas to be an of course (resp. why not) modality. This is a specificity of
Linear Logic with respect to classical logic: if weakening and contraction were
allowed for arbitrary formulas, then the multiplicatives and additives would
collapse, in the sense that one group would become derivable from the other
group and the free structural rules (Exercise 1.2.4).
Exercise 1.2.4. Prove that each rule in the additive (resp. multiplicative) group
in Table 1.2 is derivable from the multiplicative (resp. additive) group and the
structural rules free on every formulas, i.e.:

Γ ⊢ ∆
(w free
L )

Γ, A ⊢ ∆

Γ ⊢ ∆
(w free
R )

Γ ⊢ A,∆
Γ, A,A ⊢ ∆

(cfree
L )

Γ, A ⊢ ∆

Γ ⊢ A,A,∆
(cfree
R )

Γ ⊢ A,∆
Remark 1.2.5. Since Linear Logic formulas do not have free structural rules,
the multiplicative and additive rules are not interderivable from each other. On
the other hand, since the exponential formulas have structural rules, one can
restore de derivability up to some additional exponential connectives:

1.3 Basic properties

1.3.1 Multiset-based sequent rules
Notice that all the active occurrences in the rules of Table 1.2 are formulas
next to the sequent symbol ⊢, except for the exchange rules. Indeed, these
latter ones allow for relieving this constraint, making admissible rules firing on
formulas wherever in a sequent, as the following exercise proves.
Exercise 1.3.1. Given a natural number n, let us denote by Pn the set of all
permutations over n. Given a list of formulas Γ = A1, . . . , An and a permutation
σ ∈ Pn, we write Γ · σ for the action of σ over Γ, i.e. the list Aσ(1), . . . , Aσ(n).

1. Prove the derivability of the following generalized exchange rule for every
permutations σ and ρ:

Γ ⊢ ∆

Γ · σ ⊢ ∆ · ρ
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2. Prove that the derivability of every rule in Table 1.2 is invariant under the
action of any permutation over the sequents appearing in the rule. For
example, prove that for every permutations σ, σ′, σ′′, ρ, ρ′, ρ′′ of suitable
domain, the rule:

(Γ, A) · σ ⊢ ∆ · ρ (Γ′, B) · σ′ ⊢ ∆′ · ρ′

(Γ,Γ′, A`B) · σ′′ ⊢ (∆,∆′) · ρ′′

is derivable from the rule (`L) and the generalized exchange rule.

This exercise shows that one can consider sequences of formulas up to the
permutations of their elements as soon as only provability matters. This means
that considering sequents as made of finite multisets instead of finite sequences of
formulas is a correct abstraction as long as one is only concerned with provability.
More precisely, one can straightforwardly associate to any sequent Γ ⊢ ∆ the
associated multiset-based sequent (Γ)ms ⊢ (∆)ms and define a multiset-based
sequent LL calculus by viewing each sequents in the rules of Table 1.1 as a pair
of multisets and considering the associated notion of proof. Let us call LLms the
associated sequent calculus.

Proposition 1.3.2. The following hold:

• Every LL proof π : Γ ⊢LL ∆ can be mapped to a LLms proof (π)ms of
(Γ)ms ⊢LLms (∆)ms

• For any LL sequent Γ ⊢ ∆, if Π : (Γ)ms ⊢LLms (∆)ms, there is an LL proof
π such that π : Γ ⊢LL ∆ and (π)ms = Π.

We will adopt this convention henceforth, keeping the use of the exchange
rule implicit, whenever we focus on provability.

When interested in proofs and not only provability, especially with a focus
on cut-elimination, the multiset abstraction is unsound. The previous example
still shows that one can consider a proof build only with the derived rules and
therefore abstract and therefore neglect the exchange rules in the proof.

1.3.2 Expansion of identities

The axiom rule in Table 1.2 is defined for any formula. However regarding
the expressiveness of the system, it is enough to restrict it to atomic formulas.
Indeed, Table 1.3 defines a cut-free proof η(A) : A ⊢ A for every formula A in
which all occurrences of the (ax ) rule have atomic formulas in conclusion. This
proof requires almost no structural rule (just one exchange rule in the case of
negation). We call η(A) the extensional expansion of A, or the η-expansion
of A, as it corresponds with the η-expansion rule in λ-calculus. It is also called
the identity expansion of A: the definition of η(A) reflects the decomposition
of the identity morphism in categorical models, to be described in Section 4.1.
The definition of η(A) is also crucial in the notion of syntactic isomorphism.
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η(α) = (ax )
α ⊢ α η(0) = (0L)

0 ⊢ 0 η(⊤) = (⊤R)⊤ ⊢ ⊤

η(A⊥) =

η(A) : A ⊢ A
(nL)

A⊥, A ⊢
(nR)

A⊥ ⊢ A⊥

η(1) =
(1R)⊢ 1
(1L)

1 ⊢ 1
η(⊥) =

(⊥L)⊥ ⊢
(⊥R)⊥ ⊢ ⊥

η(A⊗B) =

η(A) : A ⊢ A η(B) : B ⊢ B
(⊗R)

A,B ⊢ A⊗B
(⊗L)

A⊗B ⊢ A⊗B

η(A`B) =

η(A) : A ⊢ A η(B) : B ⊢ B
(`L)

A`B ⊢ A,B
(`R)

A`B ⊢ A`B

η(A⊕B) =

η(A) : A ⊢ A
(⊕R1)

A ⊢ A⊕B
η(B) : B ⊢ B

(⊕R2)
B ⊢ A⊕B

(⊕L)
A⊕B ⊢ A⊕B

η(A&B) =

η(A) : A ⊢ A
(&L1)

A&B ⊢ A
η(B) : B ⊢ B

(&L2)
A&B ⊢ B

(&R)
A&B ⊢ A&B

η(!A) =

η(A) : A ⊢ A
(!L)

!A ⊢ A
(!R)

!A ⊢ !A

η(?A) =

η(A) : A ⊢ A
(?R)

A ⊢ ?A
(?L)

?A ⊢ ?A

η(∃ξ.A) =
η(A) : A ⊢ A

(∃R)
A ⊢ ∃ξ.A

(∃L)∃ξ.A ⊢ ∃ξ.A
η(∀ξ.A) =

η(A) : A ⊢ A
(∀L)∀ξ.A ⊢ A
(∀R)∀ξ.A ⊢ ∀ξ.A

Table 1.3: η-expansion
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1.3.3 Linear equivalences

Two formulas A and B are (linearly) equivalent, written A ⊣⊢ B, if both
implications A ⊸ B and B ⊸ A are provable (i.e. if A ˛ B is provable).
Equivalently, A ⊣⊢ B if both A ⊢ B and B ⊢ A are provable. Thanks to the cut
rule, this is also equivalent to asking that for all Γ and ∆: Γ ⊢ A,∆ is provable
if and only if Γ ⊢ B,∆ is provable.

Remark 1.3.3. By definition, we have A ⊣⊢ B if and only if A⊥ ⊣⊢ B⊥.

Two related notions are isomorphism (stronger than equivalence) and equiprov-
ability (weaker than equivalence): ⊢ A ⇐⇒ ⊢ B.

Example 1.3.4. For any formulas A and B, A⊗B and A&B are equiprovable.
However neither ⊥⊗⊥ ⊢ ⊥&⊥ nor ⊥&⊥ ⊢ ⊥⊗⊥ are provable.

Example 1.3.5 (Linear distributivity). Given three LL formulas A,B and C, it
is in general not the case that A ⊗ (B ` C) ⊣⊢ (A ⊗ B) ` C. Indeed, while
A ⊗ (B ` C) ⊢ (A ⊗ B) ` C) is provable, (A ⊗ B) ` C) ⊢ A ⊗ (B ` C) is not.
(The proof of this latter fact immediately follows from cut-elimination.)

Exercise 1.3.6 (Beffara’s formula). Prove that A⊗(A⊥`A) is linearly equivalent
to A.

1.3.3.1 De Morgan laws

A key property of Linear Logic coming from the left-right symmetry of sequents
is that negation is involutive:

A ⊣⊢ (A⊥)⊥

This induces a De Morgan duality between connectives:

(A⊗B)⊥ ⊣⊢ A⊥ `B⊥ (A`B)⊥ ⊣⊢ A⊥ ⊗B⊥

1⊥ ⊣⊢ ⊥ ⊥⊥ ⊣⊢ 1

(A⊕B)⊥ ⊣⊢ A⊥ &B⊥ (A&B)⊥ ⊣⊢ A⊥ ⊕B⊥

0⊥ ⊣⊢ ⊤ ⊤⊥ ⊣⊢ 0

(!A)⊥ ⊣⊢ ?(A⊥) (?A)⊥ ⊣⊢ !(A⊥)

(∃ξ.A)⊥ ⊣⊢ ∀ξ.(A⊥) (∀ξ.A)⊥ ⊣⊢ ∃ξ.(A⊥)

Notice that one can define a rewrite system→dM on LL formulas by orienting
from left to right each of the above twelve linear equivalences and adding the
reduction a⊥⊥ →dM a for a an atomic formula:
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(a⊥)⊥ →dM a (a an atom)

1⊥ →dM ⊥ ⊥⊥ →dM 1

(A⊗B)⊥ →dM A⊥ `B⊥ (A`B)⊥ →dM A⊥ ⊗B⊥

⊤⊥ →dM 0 0⊥ →dM ⊤
(A⊕B)⊥ →dM A⊥ &B⊥ (A&B)⊥ →dM A⊥ ⊕B⊥

(!A)⊥ →dM ?A⊥ (?A)⊥ →dM !A⊥

(∀ξ.A)⊥ →dM ∃ξ.A⊥ (∃ξ.A)⊥ →dM ∀ξ.A⊥ .

The resulting rewriting system is convergent: it has the diamond property
and it is strongly normalizing (defining the weight of a negation A⊥ as being
the size of the formula tree of A, neglecting the negations, one remarks that
each reduction step decreases the weight of the negation involved in the redex
without modifying the weights of the others negation, therefore every reduction
step strictly decreases the sum of the weights of all negations). The unique
→dM-normal form of a formula A, written AdM, is called the de Morgan normal
form of A.

1.3.3.2 Fundamental equivalences

We now give a list of equivalences which constitute key properties of Linear
Logic provability.

Associativity, commutativity, neutrality:

A⊗ (B ⊗ C) ⊣⊢ (A⊗B)⊗ C A⊗B ⊣⊢ B ⊗A A⊗ 1 ⊣⊢ A
A` (B ` C) ⊣⊢ (A`B)` C A`B ⊣⊢ B `A A`⊥ ⊣⊢ A
A⊕ (B ⊕ C) ⊣⊢ (A⊕B)⊕ C A⊕B ⊣⊢ B ⊕A A⊕ 0 ⊣⊢ A
A& (B & C) ⊣⊢ (A&B) & C A&B ⊣⊢ B &A A&⊤ ⊣⊢ A

Idempotence of additives:

A⊕A ⊣⊢ A A&A ⊣⊢ A

Distributivity of multiplicatives over additives:

A⊗ (B ⊕ C) ⊣⊢ (A⊗B)⊕ (A⊗ C) A⊗ 0 ⊣⊢ 0

A` (B & C) ⊣⊢ (A`B) & (A` C) A`⊤ ⊣⊢ ⊤
Defining property of exponentials:

!(A&B) ⊣⊢ !A⊗ !B !⊤ ⊣⊢ 1

?(A⊕B) ⊣⊢ ?A` ?B ?0 ⊣⊢ ⊥
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?

?!?

ε !? ?!

!?!

!

Figure 1.1: The lattice of iterated exponential modalities

Idempotence of exponentials:

!!A ⊣⊢ !A ??A ⊣⊢ ?A

Alternated idempotence of exponentials:

!?!?A ⊣⊢ !?A !?1 ⊣⊢ 1

?!?!A ⊣⊢ ?!A ?!⊥ ⊣⊢ ⊥

These properties of exponentials lead to the lattice of iterated exponential
modalities (see Figure 1.1 where an arrow µ → ν means that for any formula
A, we have µA ⊢ νA, and see Exercise 1.3.7 for corresponding proofs).

Exercise 1.3.7. An iterated exponential modality is a (possibly empty) sequence
of exponential modalities (for example the empty one ε, !!! or ?!!?). Given two
iterated exponential modalities µ and ν, we say that µ ≤ ν if for any A, µA ⊢ νA
is provable. If µ is an iterated exponential modality, its dual µ⊥ is obtained by
turning each ! into a ? and each ? into a ! (e.g. (!!?)⊥ = ??!).

1. Prove that ≤ defines a preorder on iterated exponential modalities.

2. Prove that ≤ is not a total preorder.

3. Given three iterated exponential modalities µ, ν1 and ν2 prove that ν1 ≤ ν2
implies µν1 ≤ µν2.

4. Given two iterated exponential modalities µ and ν prove that µ ≤ ν implies
ν⊥ ≤ µ⊥.

5. Using the properties about exponentials given before this exercise, prove
that the equivalence relation induced by ≤ has at most 7 equivalence
classes.

6. Prove that the order relations pictured on Figure 1.1 hold.

7. Prove that ? ̸≤ ε, ? ̸≤ ?!?, ?! ̸≤ !? and !? ̸≤ ?!.
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8. Conclude that Figure 1.1 exactly describes the preorder relation on iter-
ated exponential modalities.

Commutation of quantifiers (we assume that ζ does not occur in A):

∃ξ.∃ψ.A ⊣⊢ ∃ψ.∃ξ.A ∃ξ.(A⊕B) ⊣⊢ ∃ξ.A⊕ ∃ξ.B ∃ζ.(A⊗B) ⊣⊢ A⊗ ∃ζ.B ∃ζ.A ⊣⊢ A
∀ξ.∀ψ.A ⊣⊢ ∀ψ.∀ξ.A ∀ξ.(A&B) ⊣⊢ ∀ξ.A& ∀ξ.B ∀ζ.(A`B) ⊣⊢ A` ∀ζ.B ∀ζ.A ⊣⊢ A

1.3.3.3 Second-order definability

The units and the additive connectives can be defined using second-order quan-
tification and exponentials, indeed the following equivalences hold:

0 ⊣⊢ ∀X.X
⊤ ⊣⊢ ∃X.X
1 ⊣⊢ ∀X.(X ⊸ X)

⊥ ⊣⊢ ∃X.(X ⊗X⊥)

A⊕B ⊣⊢ ∀X.(!(A⊸ X)⊸ !(B⊸ X)⊸ X)

A&B ⊣⊢ ∃X.(!(A⊸ X)⊗ !(B⊸ X)⊸ X⊥)

The constants ⊤ and ⊥ and the connective & can be defined by duality (see
Remark 1.3.3).

1.3.4 Deduction lemma

As already mentioned in Section 1.3.3, there are many ways of relating the
provability of two formulas in Linear Logic. The goal of a deduction lemma is
to relate the possibility of deriving ⊢ B from ⊢ A and the provability of A ⊢ B,
but things are a bit subtle in Linear Logic.

Lemma 1.3.8 (Weakening). If Γ ⊢ ∆ is derivable from Γ1 ⊢ ∆1, . . . , Γn ⊢ ∆n,
then !A,Γ ⊢ ∆ is derivable from !A,Γ1 ⊢ ∆1, . . . , !A,Γn ⊢ ∆n as soon as A is
a closed formula.

Proof. By induction on the derivation of Γ ⊢ ∆. Typical key cases are:

• (ax ) rule:

(ax )
B ⊢ B 7→

(ax )
B ⊢ B

(wL)
!A,B ⊢ B

• (⊗R) rule:

Γ ⊢ B,∆ Γ′ ⊢ C,∆′
(⊗R)

Γ,Γ′ ⊢ B ⊗ C,∆,∆′ 7→
!A,Γ ⊢ B,∆ !A,Γ′ ⊢ C,∆′

(⊗R)
!A, !A,Γ,Γ′ ⊢ B ⊗ C,∆,∆′

(cL)
!A,Γ,Γ′ ⊢ B ⊗ C,∆,∆′
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• (!R) rule:

!Γ ⊢ B, ?∆
(!R)

!Γ ⊢ !B, ?∆
7→

!A, !Γ ⊢ B, ?∆
(!R)

!A, !Γ ⊢ !B, ?∆

• (∀R) rule:

Γ ⊢ B,∆
(∀R)

Γ ⊢ ∀ξ.B,∆
7→

!A,Γ ⊢ B,∆
(∀R)

!A,Γ ⊢ ∀ξ.B,∆

This is correct because A is closed and thus ξ is not free in !A.

In the previous lemma, it is crucial that we use a prefixing ! to cross (!R)
and (?L) rules. Similarly the closure assumption on A allows to cross (∀R) and
(∃L) rules.

Exercise 1.3.9. Prove that the rule of example 1.2.3, ⊢ A⊗B
⊢ A

, is not derivable.

Lemma 1.3.10 (Deduction). Assuming A is a closed formula, there is a deriva-
tion of Γ ⊢ ∆ from possibly many assumptions ⊢ A if and only if !A,Γ ⊢ ∆ is
provable.

Proof. In the first direction, we apply Lemma 1.3.8 to get a derivation of !A,Γ ⊢
∆ from assumptions !A ⊢ A. We then turn it into a proof of !A,Γ ⊢ ∆ by
replacing these assumptions with:

(ax )
A ⊢ A

(!L)
!A ⊢ A

Conversely, we can build the derivation:

⊢ A
(!R)⊢ !A !A,Γ ⊢ ∆

(cut)
Γ ⊢ ∆

As already mentioned above for the weakening lemma, the introduction of
the ! connective in the deduction lemma is crucial since A ⊢ !A is not provable
in general while we have:

⊢ A
(!R)⊢ !A
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1.3.5 One-sided sequent calculus
Notice that Table 1.2 is symmetric, similarly to the sequent calculus LK for
classical logic: for every left introduction rule, there is a right introduction rule
for the dual connective that has the exact same structure. Moreover, because
of the involutivity of negation proved in Section 1.3.3, the hypothesis and the
thesis in a sequent can be exchanged by negation.
Exercise 1.3.11. A sequent Γ ⊢ ∆ is provable iff ⊢ Γ⊥,∆ is provable iff ∆⊥ ⊢ Γ⊥

is provable iff Γ,∆⊥ ⊢ is provable.
Similarly to what happens in LK, these remarks allow to define a one-sided

sequent calculus, proving the same formulas as the calculus in Table 1.2, while
enjoying the following features:

• formulas are built inductively from literals (atoms and negated atoms)
using all LL connectives except linear negation:

F,G ::= a | F ⊗G | 1 | F ⊕G | 0 | !F
| a⊥ | F `G | ⊥ | F &G | ⊤ | ?F ;

• negation is not a connective anymore, but a syntactically defined operation
on formulas given by the De Morgan laws: the negation of A is defined
to be the formula (A⊥)

dM (see Section 1.3.3), that we shall simply write
(A)⊥, or simply A⊥, in the context one-sided sequent calculus. The full
definition of the negation operator is:

(α)⊥ := α⊥ (α⊥)⊥ := α

(1)⊥ := ⊥ (⊥)⊥ := 1

(A⊗B)⊥ := (A)⊥ ` (B)⊥ (A`B)⊥ := (A)⊥ ⊗ (B)⊥

(⊤)⊥ := 0 (0)⊥ := ⊤
(A⊕B)⊥ := (A)⊥ & (B)⊥ (A&B)⊥ := (A)⊥ ⊕ (B)⊥

(!A)⊥ := ?(A)⊥ (?A)⊥ := !(A)⊥

(∀ξ.A)⊥ := ∃ξ.(A)⊥ (∃ξ.A)⊥ := ∀ξ.(A)⊥ .

• sequents now have the form ⊢ Γ;

• the rules are essentially the same as those of the two-sided version, except
that the left hand side of sequents is kept empty and that the axiom and
cut rules shall be adapted.

The rules of the one-sided sequent calculus are presented in Table 1.4, where
every formula occurring in each sequent is assumed to be DM-normal.2 Note
that there is no rule for negation in Table 1.4, as this is now an involutive
operator on formulas rather than a connective.

2We assume the same conventions as above regarding the derivable rules using the exchange
rule.
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Identity group

(ax )
⊢ F⊥, F

⊢ F,Γ ⊢ F⊥,∆
(cut)

⊢ Γ,∆

Multiplicative group
⊢ F,Γ ⊢ G,∆

(⊗)
⊢ F ⊗G,Γ,∆

(1)
⊢ 1

⊢ F,G,Γ
(`)

⊢ F `G,Γ

⊢ Γ
(⊥)

⊢ ⊥,Γ

Additive group
⊢ Fi,Γ

(⊕i)⊢ F1 ⊕ F2,Γ

⊢ F,Γ ⊢ G,Γ
(&)

⊢ F &G,Γ
(⊤)

⊢ ⊤,Γ

Quantifier group

In the rule (∀1) (resp. (∀2)), the variable x (resp. X) must not occur free in Γ.

⊢ F [t/x],Γ
(∃1)

⊢ ∃x.F,Γ
⊢ F [B/X],Γ

(∃2)
⊢ ∃X.F,Γ

⊢ F,Γ
(∀1)

⊢ ∀x.F,Γ
⊢ F,Γ

(∀2)
⊢ ∀X.F,Γ

Exponential group
⊢ F, ?Γ

(!)
⊢ !F, ?Γ

⊢ F,Γ
(?)

⊢ ?F,Γ

Structural group
⊢ Γ, F,G,∆

(ex )
⊢ Γ, G, F,∆

⊢ Γ
(w)

⊢ ?F,Γ

⊢ ?F, ?F,Γ
(c)

⊢ ?F,Γ

Table 1.4: Inference rules for the one-sided Linear Logic sequent calculus
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Theorem 1.3.12. A two-sided sequent Γ ⊢ ∆ is provable (resp. provable with-
out (cut)) by rules of Table 1.2 if and only if the sequent ⊢ Γ⊥dM

,∆dM is provable
(resp. provable without (cut)) by the rules of Table 1.4.

Proof (Sketch). The if-direction is a consequence of Exercise 1.3.11 and the fact
that the rules of Table 1.4 are specific instances of the right rules of Table 1.2,
but for the axiom and the cut rules, which can be easily proved admissible from
Table 1.2. The only-if-direction can be proven by structural induction on a
proof of Γ ⊢ ∆.

The one-sided calculus is often used when studying proofs because it is much
lighter (less than half the number of rules) than the two-sided form while keeping
the same expressiveness. In the next sections, we will establish the key properties
of this sequent calculus — including the admissibility of the (cut) rule, the
subformula property, etc. — for the one-sided version: their generalization to
the two-sided version is straightforward. Moreover, proof nets, to be introduced
in Chapter 2, can be seen as a quotient of one-sided sequent calculus proofs
under some commutations of rules.

Beyond that point, unless we explicitly consider a two-sided calculus, we will
generally identify any formula A with its DM-normal form AdM.

1.4 Some fragments of interest
In general, a fragment of a logical system S is a logical system obtained by
restricting the language of S, and by restricting the rules of S accordingly.

The most well known fragments are obtained by combining/removing in
different ways the classes of formula constructors present in the language of
Linear Logic formulas (see Table 1.1):

• atoms;

• multiplicative connectives and their units;

• additive connectives and their units;

• exponential modalities;

• quantifiers.

The fragments of LL obtained in this way are denoted by prefixing LL with
letters corresponding to the classes of connectives being considered: M for mul-
tiplicative connectives, A for additive connectives, and E for exponential connec-
tives. Additional subscripts specify what atoms and/or quantifiers are included:
0 when we include units and propositional variables; 1 when we include gen-
eral predicates and first-order quantification; 2 when we include second-order
quantification on propositional variables; and these can be combined, so that
the subscript 02 indicates that we consider units, propositional variables, and
quantification on the latter. We moreover consider two further restrictions of
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the propositional case, denoted by specific subscripts: u when units are the only
atoms; v when propositional variables are the only atoms; and in both cases we
exclude any form of quantification.

For instance, in the multiplicative case, we obtain the following fragments
of the language of formulas:

• MLLu with constructors: 1, ⊥, ⊗, `;

• MLLv with constructors: X, X⊥, ⊗, `;

• MLL0 with constructors: 1, ⊥, X, X⊥, ⊗, `;

• MLL1 with constructors: p(t1, . . . , tn), p(t1, . . . , tn)⊥, ⊗, `, ∀x, ∃x —
where p ranges over predicate symbols;

• MLL01 with constructors: 1, ⊥, p(t1, . . . , tn), p(t1, . . . , tn)⊥, ⊗, `, ∀x, ∃x
— where p ranges over predicate symbols;

• MLL2 with constructors: X, X⊥, ⊗, `, ∀X, ∃X;

• MLL02 with constructors: 1, ⊥, X, X⊥, ⊗, `, ∀X, ∃X;

• MLL12 with constructors: p(t1, . . . , tn), p(t1, . . . , tn)⊥, ⊗, `, ∀x, ∃x, ∀X,
∃X — where p ranges over predicate symbols and second order variables;

• MLL012 with constructors: 1, ⊥, p(t1, . . . , tn), p(t1, . . . , tn)⊥, ⊗, `, ∀x,
∃x, ∀X, ∃X — where p ranges over predicate symbols and second order
variables.

Having fixed the classes of connectives, atoms and quantifiers to be consid-
ered, the induced fragment consists of the rules of Table 1.4 (or Table 1.2 in
the two-sided version, in which case one must also allow linear negation as a
connective), minus those that mention missing constructors.

Fragments of interest include:

• MLLv: formulas are built from propositional variables (and their duals)
using only ⊗ and ` connectives; and the only rules are (ax ), (cut), (⊗),
(`) and (ex ). This forms the minimal core of Linear Logic, and generally
serves as a playground where everything works perfectly. For instance, we
will first present proof nets in that setting: see Section 2.2.

• LL0: formulas are built from propositional variables (and their duals) using
multiplicative and additive connectives and units, as well as exponential
modalities; and the rules are those of Table 1.4 minus the quantifier group.
This is the fragment for which we will provide a full proof of the admissi-
bility of (cut), in Section 1.5.

• MELLv: formulas are built from propositional variables (and their duals)
using multiplicative connectives as well as exponential modalities; and the
rules are those of Table 1.4 minus the additive and quantifier groups. This
is the fragment for which proof nets are more generally introduced and
studied; it is moreover the target of translations of the λ-calculus.
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• LL02: all constructors are allowed except for predicates of non-zero arity
and first-order quantification. This is often considered as the full version
of Linear Logic, as first-order terms and quantification are generally left
aside.

• MELL2: formulas are built from propositional variables (and their duals)
using multiplicative connectives, as well as exponential modalities and
second-order quantifiers; and the rules are those of Table 1.4 minus the
additive group and the rules for first-order quantifiers and multiplicative
and additive units. This is in fact as expressive as LL02: as we have seen
in Section 1.3.3.3, the additive connectives and the multiplicative and
additive units can be encoded using second-order quantification.

Other fragments are built by keeping connectives from all classes while con-
training the way they can be combined.

• Intuitionistic formulas are output formulas (noted o) and input formulas
(noted ι):

o ::= α | o⊗ o | ι` o | 1 | o⊕ o | o& o | 0 | ⊤ | !o | ∀ξ.o | ∃ξ.o
ι ::= α⊥ | ι` ι | o⊗ ι | ⊥ | ι& ι | ι⊕ ι | ⊤ | 0 | ?ι | ∃ξ.ι | ∀ξ.ι

Note that ⊥⊗ ??⊥ is not an intuitionistic formula, while ⊤ is both input
and output. If o (resp. ι) is an output (resp. input) formula then o⊥ (resp.
ι⊥) is an input (resp. output) formula. See Section 1.7.2.1 for more details
about this fragment and its link with Intuitionistic Linear Logic (ILL).

• Polarized formulas are positive formulas (noted P ) and negative formulas
(noted N):

P ::= α | P ⊗ P | 1 | P ⊕ P | 0 | !N | ∃ξ.P
N ::= α⊥ | N `N | ⊥ | N &N | ⊤ | ?P | ∀ξ.N

Note that positive and negative formulas are disjoints classes of formulas
and that ?⊥ ⊗ ⊤ is not a polarized formula. If P (resp. N) is a positive
(resp. negative) formula then P⊥ (resp. N⊥) is a negative (resp. positive)
formula.

1.5 Cut elimination and consequences
The admissibility of the cut rule is a corner property of Linear Logic (as for
many other sequent calculi). It leads in particular to the sub-formula property
and then to consistency.

Theorem 1.5.1 (Cut admissibility). For every sequent Γ ⊢ ∆, there is a proof
of Γ ⊢ ∆ if and only if there is a proof of Γ ⊢ ∆ that does not use the cut rule.

In order to prove this admissibility property, we are going to provide an
explicit cut elimination procedure which progressively reduces cuts in a proof
(which may contain many) until the proof becomes cut-free.
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1.5.1 A proof for propositional Linear Logic
This section presents a proof of the cut elimination property for the sequent
calculus of propositional Linear Logic, that is Linear Logic without the second-
order nor first-order quantifiers. The method used here consists in defining an
appropriate reduction relation over proofs and proving its weak normalization,
to cut-free proofs, by a simple induction over proofs with an appropriate termi-
nation measure. While the technique can be easily extended to first-order (and
its extension does not bear any specificities due to Linear Logic itself), it does
not extend to second-order logic: although the induction steps are the same,
the termination argument requires more powerful tools.

In order to motivate the main ingredient of the proof, we shall first consider
few examples of proofs with cuts and how to simplify them:

⊢ A,Γ1 ⊢ B,Γ2
(⊗)

⊢ A⊗B,Γ1,Γ2

⊢ A⊥, B⊥,∆
(`)

⊢ A⊥ `B⊥,∆
(cut)

⊢ Γ1,Γ2,∆

⊗/`−→ ⊢ A,Γ1

⊢ B,Γ2 ⊢ A⊥, B⊥,∆
(cut)

⊢ A⊥,Γ2,∆
(cut)

⊢ Γ1,Γ2,∆

here one cut generates two cuts but they act on strictly smaller formulas.

⊢ A,B,C,Γ
(`)

⊢ A`B,C,Γ ⊢ C⊥,∆
(cut)

⊢ A`B,∆,Γ

comm(`)−→
⊢ A,B,C,Γ ⊢ C⊥,∆

(cut)
⊢ A,B,∆,Γ

(`)
⊢ A`B,∆,Γ

here the cut still acts on the same formula but its left premise comes from a
strictly smaller proof.

⊢ ?A, ?A,Γ
(c)

⊢ ?A,Γ ⊢ !A⊥, ?∆
(cut)

⊢ ?∆,Γ

c/!−→

⊢ ?A, ?A,Γ ⊢ !A⊥, ?∆
(cut)

⊢ ?A, ?∆,Γ ⊢ !A⊥, ?∆
(cut)

⊢ ?∆, ?∆,Γ
(c)

⊢ ?∆,Γ

here one cut generates two cuts acting on the same formula, the top-most one
acts on smaller proofs but there is no such guarantee for the bottom one (this
is the main source of difficulty in the proof to come).
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Definition 1.5.2 (Cut Rank). Let π : ⊢ Γ be a proof and r an occurrence of
a cut inference of π.

The cut rank of r, rk(r) is the complexity of its cut-formula, that is the
number of connectives of the cut formula. The proof rank of π, rk(π) is the
supremum of its cut ranks.

Definition 1.5.3 (Level of a cut). Let π : ⊢ Γ be a proof and r an occurrence
of a cut inference of π. The level of r, lvl(r), is the size of the proof tree rooted
in r.

As rewriting steps on proof to eliminate cuts, we consider the transformations
described in Fig. 1.2 to Fig. 1.8. They have the property that if no step can be
applied in a proof, then this proof is cut-free. Using the notions of cut rank and
level of a cut, it is possible to prove the weak normalization of this rewriting
system. We will follow this approach with proof-nets for the multiplicative
exponential fragment. We adopt here a slightly different approach in the sequent
calculus by generalizing the notion of cut to avoid the problem we have seen
with the reduction of cuts on contractions. This is similar to the approach of
Gentzen for the sequent calculus of classical logic.

The following definition introduces a generalized cut which is a derivable
rule in LL thanks to the cut rule and the structural rules of weakening and con-
traction. In a sequent, ⊢ Γ, A(n),∆ means ⊢ Γ, A, . . . , A,∆ with n occurrences
of A.

Definition 1.5.4 (Structural cut). The following inference is called structural

cut : ⊢ C
(k),Γ ⊢ C⊥(l)

,∆
(scut)

⊢ Γ,∆
where an index among k, l differs from 1

only if the formula it labels is a ?-formula.

As a consequence of the definition of structural cut, it is not possible that
both k and l differ from 1. Moreover if ⊢ C(k),Γ (and the same for ⊢ C⊥(l)

,∆)

is the premise of a structural cut then:
⊢ C(k),Γ

⊢ C,Γ
is derivable (if k = 1 it is

immediate, otherwise C starts with a ? and we can use a (w) rule for k = 0 and
k − 1 (c) rules for k > 1).

In the following, we consider LL sequent calculus extended with the struc-
tural cut inference, the proof of which being called structural proofs. We will
prove LL cut-elimination by defining a weakly-normalizing reduction, 7−→c, on
those structural derivation trees, such that normal forms are (structural) cut-
free proofs.

1.5.1.1 Rank-decreasing reductions

Before actually defining the cut reduction, let us first consider a sufficient con-
dition for (structural) cut-elimination.

In the following, all relations we shall consider will be assumed to have the
property that if two proofs are in relation, they have the same conclusion.
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π1 : ⊢ C,Γ
(ax )

⊢ C⊥, C
(cut)

⊢ C,Γ

ax−→ π1 : ⊢ C,Γ

Figure 1.2: Axiom case.

π1 : ⊢ Γ1, B π2 : ⊢ Γ2, C
(⊗)

⊢ Γ1,Γ2, B ⊗ C
π3 : ⊢ ∆, B⊥, C⊥

(`)
⊢ ∆, B⊥ ` C⊥

(cutα)
⊢ Γ1,Γ2,∆

⊗/`−→ π1 : ⊢ Γ1, B

π2 : ⊢ Γ2, C π3 : ⊢ ∆, B⊥, C⊥
(cutγ)

⊢ Γ2,∆, B
⊥

(cutβ)
⊢ Γ1,Γ2,∆

(1)
⊢ 1

π1 : ⊢ Γ
(⊥)

⊢ Γ,⊥
(cut)

⊢ Γ

1/⊥−→ π1 : ⊢ Γ

Figure 1.3: Multiplicative key cases.

π0 : ⊢ Γ, Ci
(⊕i)⊢ Γ, C1 ⊕ C2

π1 : ⊢ ∆, C⊥
1 π2 : ⊢ ∆, C⊥

2
(&)

⊢,∆, C⊥
1 & C⊥

2
(cutα)

⊢ Γ,∆

⊕/&−→
π0 : ⊢ Γ, Ci πi : ⊢ ∆, C⊥

i
(cutβ)

⊢ Γ,∆
i ∈ {1, 2}

Figure 1.4: Additive key case.
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π1 : ⊢ ?Γ, B
(!)

⊢ ?Γ, !B

π2 : ⊢ ∆, B⊥
(?)

⊢ ∆, ?B⊥
(cutα)

⊢ ?Γ,∆

!/?−→
π1 : ⊢ ?Γ, B π2 : ⊢ ∆, B⊥

(cutβ)
⊢ ?Γ,∆

π1 : ⊢ ?Γ, B
(!)

⊢ ?Γ, !B

π2 : ⊢ ∆
(w)

⊢ ∆, ?B⊥
(cut)

⊢ ?Γ,∆

!/?−→
π2 : ⊢ ∆

(w)
⊢ ?Γ,∆

π1 : ⊢ ?Γ, B
(!)

⊢ ?Γ, !B

π2 : ⊢ ∆, ?B⊥, ?B⊥
(c)

⊢ ∆, ?B⊥
(cutα)

⊢ ?Γ,∆

!/?−→
π1 : ⊢ ?Γ, B

(!)
⊢ ?Γ, !B

π1 : ⊢ ?Γ, B
(!)

⊢ ?Γ, !B π2 : ⊢ ∆, ?B⊥, ?B⊥
(cutγ)

⊢ ?Γ,∆, ?B⊥
(cutβ)

⊢ ?Γ, ?Γ,∆
(c)

⊢ ?Γ,∆

Figure 1.5: Exponential key cases.

Definition 1.5.5 (Contextual reduction). A binary relation R on proof trees is
contextual if for every proofs π0, π1, π′

0 such that π0Rπ1, the proof π′
1 obtained

by replacing a subtree of π′
0 equal to π0 with π1 is such that π′

0Rπ
′
1.

Definition 1.5.6 (Rank-decreasing reduction). Let ⇝ be a contextual reduc-
tion on structural proofs. ⇝ is said to be rank-decreasing if for any proof π of the

form π1 : ⊢ C(k),Γ π2 : ⊢ C⊥(l)
,∆

(scut)
⊢ Γ,∆

such that rk(π1), rk(π2) < rk(π),

there exists π′ such that π⇝⋆ π′ and rk(π′) < rk(π).

Rank-decreasing reductions satisfy the following:

Theorem 1.5.7. If ⇝ is rank-decreasing, then for any sequent Γ and for any
proof π : ⊢ Γ, there exists a cut-free proof π′ of ⊢ Γ such that π⇝⋆ π′.

Proof. We prove the theorem by induction on the following measure (ordered
lexicographically):

w(π) =

 (0, 0) if π is scut-free
(r, n) otherwise, with r = rk(π) and n

the number of cuts of rank r in π.

Indeed, if w(π) = (0, 0), π is cut-free by definition. Otherwise, let (r, n) =
w(π). π contains n structural cuts of rank r. Consider an uppermost occurrence
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π1 : ⊢ Γ, A,B,C
(`)

⊢ Γ, A`B,C π2 : ⊢ ∆, C⊥
(cutα)

⊢ Γ, A`B,∆

comm(`)−→
π1 : ⊢ Γ, A,B,C π2 : ⊢ ∆, C⊥

(cutβ)
⊢ Γ, A,B,∆

(`)
⊢ Γ, A`B,∆

π1 : ⊢ Γ, A,C π2 : ⊢ Γ′, B
(⊗)

⊢ Γ,Γ′, A⊗B,C π3 : ⊢ ∆, C⊥
(cutα)

⊢ Γ,Γ′, A⊗B,∆

comm(⊗l)−→
π1 : ⊢ Γ, A,C π3 : ⊢ ∆, C⊥

(cutβ)
⊢ Γ, A,∆ π2 : ⊢ Γ′, B

(⊗)
⊢ Γ,Γ′, A⊗B,∆

π1 : ⊢ Γ, A π2 : ⊢ Γ′, B,C
(⊗)

⊢ Γ,Γ′, A⊗B,C π3 : ⊢ ∆, C⊥
(cutα)

⊢ Γ,Γ′, A⊗B,∆

comm(⊗r)−→ π1 : ⊢ Γ, A

π2 : ⊢ Γ′, B,C π3 : ⊢ ∆, C⊥
(cutβ)

⊢ Γ′, B,∆
(⊗)

⊢ Γ,Γ′, A⊗B,∆
π1 : ⊢ Γ, C

(⊥)
⊢ Γ,⊥, C π2 : ⊢ ∆, C⊥

(cutα)
⊢ Γ,⊥,∆

comm(⊥)−→
π1 : ⊢ Γ, C π2 : ⊢ ∆, C⊥

(cutβ)
⊢ Γ,∆

(⊥)
⊢ Γ,⊥,∆

Figure 1.6: Multiplicative commutation cases.
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π1 : ⊢ A,Γ, C π2 : ⊢ B,Γ, C
(&)

⊢ A&B,Γ, C π3 : ⊢ ∆, C⊥
(cutα)

⊢ A&B,Γ,∆

comm(&)−→
π1 : ⊢ A,Γ, C π3 : ⊢ ∆, C⊥

(cutβ)
⊢ A,Γ,∆

π2 : ⊢ B,Γ, C π3 : ⊢ ∆, C⊥
(cutγ)

⊢ B,Γ,∆
(&)

⊢ A&B,Γ,∆

π1 : ⊢ Γ, Ai, C
(⊕i)⊢ Γ, A1 ⊕A2, C π2 : ⊢ ∆, C⊥

(cutα)
⊢ Γ, A1 ⊕A2,∆

comm(⊕i)−→
π1 : ⊢ Γ, Ai, C π2 : ⊢ ∆, C⊥

(cutβ)
⊢ Γ, Ai,∆

(⊕i)⊢ Γ, A1 ⊕A2,∆

(⊤)
⊢ ⊤,Γ, C π : ⊢ ∆, C⊥

(cut)
⊢ ⊤,Γ,∆

comm(⊤)−→ (⊤)
⊢ ⊤,Γ,∆

Figure 1.7: Additive commutation cases.

of such a cut of maximal rank and call π′ the subproof rooted in this cut.
By the rank-decreasing property, there exists a proof π′′ such that π′⇝⋆ π′′

and rk(π′′) < rk(π′). Indeed, the premises of π′ have strictly smaller ranks by
maximallity of the cut inference concluding π′. Therefore, by contextual closure
of ⇝, there is π such that π⇝π.

Either n > 1 and therefore w(π) = (r, n−1) or n = 1 and w(π) = (r, n) with
r < r. In both cases w(π) <lex w(π) and we can apply the induction hypothesis
to π: there exists a scut-free proof π⋆ such that π⇝⋆ π⋆ and we can conclude:

π⇝ ⋆π⇝ ⋆π⋆.

1.5.1.2 Definition of 7−→c

It is therefore sufficient to exhibit a rank-decreasing reduction to deduce cut-
elimination: we shall now construct such a reduction.

In order to obtain 7−→c, we shall consider some cases of scut inference and
collect them to the reduction relation, analyzing as we proceed their impact on
the rank and level of the scuts involved in this transformations. Once this is
done, 7−→c will be defined as the contextual/compatible closure of the previous
notion of reduction.

The cases we analyze will be essentially of four types: (i) one of the premises
is an axiom inference and one of its conclusions is cut, this is called an axiom
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π1 : ⊢ A, ?Γ, ?C
(!)

⊢ !A, ?Γ, ?C

π2 : ⊢ ?∆, C⊥
(!)

⊢ ?∆, !C⊥
(cutα)

⊢ !A, ?Γ, ?∆

comm(!)−→ π1 : ⊢ A, ?Γ, ?C
π2 : ⊢ ?∆, C⊥

(!)
⊢ ?∆, !C⊥

(cutβ)
⊢ A, ?Γ, ?∆

(!)
⊢ !A, ?Γ, ?∆

π1 : ⊢ A,Γ, C
(?)

⊢ ?A,Γ, C π2 : ⊢ ∆, C⊥
(cutα)

⊢ ?A,Γ,∆

comm(?)−→
π1 : ⊢ A,Γ, C π2 : ⊢ ∆, C⊥

(cutβ)
⊢ A,Γ,∆

(?)
⊢ ?A,Γ,∆

π1 : ⊢ ?A, ?A,Γ, C
(c)

⊢ ?A,Γ, C π2 : ⊢ ∆, C⊥
(cutα)

⊢ ?A,Γ,∆

comm(c)−→
π1 : ⊢ ?A, ?A,Γ, C π2 : ⊢ ∆, C⊥

(cutβ)
⊢ ?A, ?A,Γ,∆

(c)
⊢ ?A,Γ,∆

π1 : ⊢ Γ, C
(w)

⊢ ?A,Γ, C π2 : ⊢ ∆, C⊥
(cutα)

⊢ ?A,Γ,∆

comm(w)−→
π1 : ⊢ Γ, C π2 : ⊢ ∆, C⊥

(cutβ)
⊢ Γ,∆

(w)
⊢ ?A,Γ,∆

Figure 1.8: Exponential commutation cases.
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• k = 1

π1 : ⊢ C,Γ
(ax )

⊢ C⊥, C
(scut)

⊢ Γ, C

ax−→ π1 : ⊢ C,Γ

• k = 0

π1 : ⊢ Γ
(ax )

⊢ !B⊥, ?B
(scut)

⊢ Γ, ?B

ax−→
π1 : ⊢ Γ

(w)
⊢ ?B,Γ

• k > 1

π1 : ⊢ ?B(k),Γ
(ax )

⊢ !B⊥, ?B
(scut)

⊢ Γ, ?B

ax−→
π1 : ⊢ ?B(k),Γ

(ck−1)
⊢ ?B,Γ

Figure 1.9: Axiom key cases.

key case, (ii) the cut formula is principal in a logical rule in both premises of
the cut, this is called a key logical case, (iii) the cut formula is an exponential
formula with a ?-occurrence immediately introduced by a structural rule, this
is called a structural case, (iv) or there is at least one premise in which the cut
formula is not active, this is called a commutative case.

Axiom key cases When a proof has the following shape:

π1 : ⊢ C(k),Γ
(ax )

⊢ C⊥, C
(scut)

⊢ Γ, C

When one of the premises of the cut is an axiom, say π2 (the other case is
treated symmetrically and will also be added in −→), we distinguish two
main cases:

• if k = 1, then we reduce π and π1 have the same conclusion and one
reduces π to π1.

• if k ̸= 1, then necessarily, C is a ?-formula, ?B, for which structural
rules of weakening and contraction are available. Using the structural
rules, one reduces π to π1 extended with a weakening if k = 0 and
with the adequate number of contractions if k > 1.

The corresponding relation, ax−→ is defined in Figure 1.9.

Logical key cases:

Multiplicative key case: In the case of mutiplicative cut formulas, ⊗
vs. ` inferences, proof π has the following shape (in particular we
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have k = l = 1 in the structural cut):

π1 : ⊢ Γ1, B π2 : ⊢ Γ2, C
(⊗)

⊢ Γ1,Γ2, B ⊗ C
π3 : ⊢ ∆, B⊥, C⊥

(`)
⊢ ∆, B⊥ ` C⊥

(scut)
⊢ Γ1,Γ2,∆

We add the reduction depicted in Figure 1.3, denoted as
⊗/`−→, where

each of the bottommost cut occurrences has been labelled and we
notice that rk(β), rk(γ) < rk(α), lvl(γ) < lvl(α) = lvl(β) + 1.
Similarly, the nullary case of the multiplicative constants is:

(1)
⊢ 1

π1 : ⊢ Γ
(⊥)

⊢ Γ,⊥
(scut)

⊢ Γ

1/⊥−→ π1 : ⊢ Γ

Additive key case: In the case of additive cut formulas, ⊕ vs. & infer-
ences, proof π has the following shape (in particular we have k = l = 1
in the structural cut):

π0 : ⊢ Γ, Ci
(⊕i)⊢ Γ, C1 ⊕ C2

π1 : ⊢ ∆, C⊥
1 π2 : ⊢ ∆, C⊥

2
(&)

⊢,∆, C⊥
1 & C⊥

2
(scutα)

⊢ Γ,∆

We consider the reduction depicted in Figure 1.4, denoted as
⊕/&−→,

where each of the bottommost cut occurrences has been labelled and
we notice that rk(β) < rk(α) and lvl(β) < lvl(α). The symmetrical
&/⊕−→ is naturally considered too.
Remark that there is no key case for the additive constant as 0 has
no introduction rule.

Exponential key case: In the case of exponential cut formulas, ? vs. !
inferences, proof π has the following shape (with l ≥ 0):

π1 : ⊢ ?Γ, B
(!)

⊢ ?Γ, !B

π2 : ⊢ ∆, B⊥, ?B⊥(l)

(?)
⊢ ∆, ?B⊥(l+1)

(scut)
⊢ ?Γ,∆

We add the reduction depicted in Figure 1.10, denoted
!/?−→, where the

bottommost cut occurrence has been labelled and we notice rk(β) <
rk(α), rk(γ) = rk(α), lvl(γ) = lvl(α)−1 (but lvl(β) may be larger than
the lvl(α)).

Structural cases These are cases which are specific to the use of structural
cuts. Such situations are handled differently with usual cuts.
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π1 : ⊢ ?Γ, B
(!)

⊢ ?Γ, !B

π2 : ⊢ ∆, B⊥, ?B⊥(l)

(?)
⊢ ∆, ?B⊥(l+1)

(scutα)
⊢ ?Γ,∆

!/?−→ π1 : ⊢ ?Γ, B

π1 : ⊢ ?Γ, B
(!)

⊢ ?Γ, !B π2 : ⊢ ∆, B⊥, ?B⊥(l)

(scutγ)
⊢ ?Γ,∆, B⊥

(scutβ)
⊢ ?Γ, ?Γ,∆

(c⋆)
⊢ ?Γ,∆

Figure 1.10: Exponential key case.

• Weakening:

π1 : ⊢ Γ, !B

π2 : ⊢ ∆, ?B⊥(l)

(w)
⊢ ∆, ?B⊥(l+1)

(scutα)
⊢ Γ,∆

w−→ π1 : ⊢ Γ, !B π2 : ⊢ ∆, ?B⊥(l)

(scutβ)
⊢ Γ,∆

• Contraction:

π1 : ⊢ Γ, !B

π2 : ⊢ ∆, ?B⊥(l+2)

(c)
⊢ ∆, ?B⊥(l+1)

(scutα)
⊢ ?Γ,∆

c−→ π1 : ⊢ Γ, !B π2 : ⊢ ∆, ?B⊥(l+2)

(scutβ)
⊢ Γ,∆

Figure 1.11: Structural cases.
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• Weakening:

π1 : ⊢ Γ, !B

π2 : ⊢ ∆, ?B⊥(l)

(w)
⊢ ∆, ?B⊥(l+1)

(scut)
⊢ Γ,∆

• Contraction:

π1 : ⊢ Γ, !B

π2 : ⊢ ∆, ?B⊥(l+2)

(c)
⊢ ∆, ?B⊥(l+1)

(scut)
⊢ Γ,∆

We add the reductions depicted in Figure 1.11, denoted w−→ and c−→ where
each of the bottommost cut occurrences has been labelled and we notice
the following relations about the ranks and levels of cuts:

• (w): rk(β) = rk(α), lvl(β) = lvl(α)− 1.
• (c): rk(β) = rk(α), lvl(β) = lvl(α)− 1.

Commutative cases When none of the previous cases applies, one considers
commutation steps which do not modify the rank of the cut but decrease
the level of the cut. We depict some of thoses cases:

ax commutation step

(ax )
⊢ A⊥, A,C(k) π2 : ⊢ ∆, C⊥(l)

(scut)
⊢ A⊥, A,∆

We notice that necessarily k = 0 and thus C is a ?-formula ?B. This
makes this situation non symmetric, and allows us to assume (after
applying commutative steps) that !B⊥ is principal:

(ax )
⊢ A⊥, A π2 : ⊢ ?∆, !B⊥

(scut)
⊢ A⊥, A, ?∆

comm(ax)−→
(ax )

⊢ A⊥, A
(w)

⊢ A⊥, A, ?∆

The result is cut-free.
` commutation step

π1 : ⊢ Γ, A,B,C(k)

(`)
⊢ Γ, A`B,C(k) π2 : ⊢ ∆, C⊥(l)

(scutα)
⊢ Γ, A`B,∆
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comm(`)−→
π1 : ⊢ Γ, A,B,C(k) π2 : ⊢ ∆, C⊥(l)

(scutβ)
⊢ Γ, A,B,∆

(`)
⊢ Γ, A`B,∆

We notice that rk(β) = rk(α) and lvl(β) < lvl(α).
& commutation step

π1 : ⊢ A,Γ, C(k) π2 : ⊢ B,Γ, C(k)

(&)
⊢ A&B,Γ, C(k) π3 : ⊢ ∆, C⊥(l)

(scutα)
⊢ A&B,Γ,∆

comm(&)−→
π1 : ⊢ A,Γ, C(k) π3 : ⊢ ∆, C⊥(l)

(scutβ)
⊢ A,Γ,∆

π2 : ⊢ B,Γ, C(k) π3 : ⊢ ∆, C⊥(l)

(scutγ)
⊢ B,Γ,∆

(&)
⊢ A&B,Γ,∆

We notice that rk(β) = rk(γ) = rk(α) and lvl(β), lvl(γ) < lvl(α).
⊤ commutation step

(⊤)
⊢ ⊤,Γ, C(k) π : ⊢ ∆, C⊥(l)

(scutα)
⊢ ⊤,Γ,∆

comm(⊤)−→ (⊤)
⊢ ⊤,Γ,∆

We notice that the resulting proof is cut-free.
Promotion commutation step

π1 : ⊢ A, ?Γ, ?C(k)

(!)
⊢ !A, ?Γ, ?C(k) π2 : ⊢ ?∆, !C⊥

(scutα)
⊢ !A, ?Γ, ?∆

comm(!)−→
π1 : ⊢ A, ?Γ, ?C(k) π2 : ⊢ ?∆, !C⊥

(scutβ)
⊢ A, ?Γ, ?∆

(!)
⊢ !A, ?Γ, ?∆

We notice that rk(β) = rk(α) and lvl(β) < lvl(α). Note also that in
the case where the context of !C⊥ is not made of ?-formulas, we can
apply a commutation step on π2 since !C⊥ is not principal.

Dereliction commutation step

π1 : ⊢ A,Γ, C(k)

(?)
⊢ ?A,Γ, C(k) π2 : ⊢ ∆, C⊥(l)

(scutα)
⊢ ?A,Γ,∆

comm(?)−→
π1 : ⊢ A,Γ, C(k) π2 : ⊢ ∆, C⊥(l)

(scutβ)
⊢ A,Γ,∆

(?)
⊢ ?A,Γ,∆
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We notice that rk(β) = rk(α) and lvl(β) < lvl(α).

Structural commutation step For contraction:

π1 : ⊢ ?A, ?A,Γ, C(k)

(c)
⊢ ?A,Γ, C(k) π2 : ⊢ ∆, C⊥(l)

(scutα)
⊢ ?A,Γ,∆

comm(c)−→
π1 : ⊢ ?A, ?A,Γ, C(k) π2 : ⊢ ∆, C⊥(l)

(scutβ)
⊢ ?A, ?A,Γ,∆

(c)
⊢ ?A,Γ,∆

For weakening:

π1 : ⊢ Γ, C(k)

(w)
⊢ ?A,Γ, C(k) π2 : ⊢ ∆, C⊥(l)

(scutα)
⊢ ?A,Γ,∆

comm(w)−→
π1 : ⊢ Γ, C(k) π2 : ⊢ ∆, C⊥(l)

(scutβ)
⊢ Γ,∆

(w)
⊢ ?A,Γ,∆

For both cases, we notice that rk(β) = rk(α) and lvl(β) < lvl(α).

1.5.1.3 7−→c is rank-decreasing

We now prove that−→ is rank-decreasing, therefore concluding that cut-elimination
holds.

Lemma 1.5.8. Let π be an LL structural proof of the form:

π1 : ⊢ C(k),Γ π2 : ⊢ C⊥(l)
,∆

(scut)
⊢ Γ,∆

such that rk(π1), rk(π2) < rk(π), then there exists π′ such that π −→⋆ π′ and
rk(π′) < rk(π).

Proof. We prove the lemma by induction on the size of π.

Base case: Assume that at both premises of π are or size 1: they are either an
axiom, a 1 or a ⊤. Then π reduces to some scut-free π′, therefore of rank
0.

Inductive case: We reason by case analysis on the last inference of π1 and π2.

1. Linear key-cases: we saw in the previous section that the rank de-
crease by one step of −→.
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2. Axiom/scut case: assume, wlog, that π2 is an axiom: context ∆ is
the singleton context C and π ⊢ Γ, C. Then either k = 1 and we set
π′ to π1 or l ̸= 1 and C is an ?-formula and there is some π′ obtained
by adding structural rules on C to the conclusion of π1, such that
π −→ π′. In both cases rk(pi′) = rk(π1) < rk(π).

3. Exponential key-case: we saw in the previous section that π −→ π′

by reducing the root cut of π into two scuts: one of the same rank
and lower level and one of lower rank. We can apply the induction
hypothesis to the subproof of π′ rooted in the cut of maximal rank
(equal to rk(π)) as it is of a smaller size than π and we obtain a proof
π′′, such that π −→ π′ −→⋆ π′′ and rk(π′′) < rk(π).

4. Commutative cases: In all cases, π −→ π0 where the root cut of π is
transformed into one or more cuts on C,C⊥, ie of the same rank as
π, which are all incomparable (ie they are on different branches) and
of a strictly smaller level.
As a consequence, the induction hypothesis can be applied indepen-
dently to each of the proofs π01, . . . , π0k rooted in those cuts of rank
equating rk(π) leading proofs π′

01, . . . , π
′
0k such that π0i −→⋆ π′

0i, 1 ≤
i ≤ k of rank strictly smaller that rk(π) and we conclude by contex-
tuality of −→ that π0 −→⋆ π′ with rk(π′) < rk(π).

5. Structural cases: we have π −→ π′ by reducing the root cut of π
into at most one cut of the same rank and lower level. We can apply
the induction hypothesis to the subproof of π′ rooted in the cut (if
any) and we obtain a proof π′′, such that π −→ π′ −→⋆ π′′ and
rk(π′′) < rk(π).

1.5.2 Consequences

Cut elimination has several important consequences:

Definition 1.5.9 (Subformula). The subformulas of a formula A are A and,
inductively, the subformulas of its immediate subformulas:

• the immediate subformulas of A⊗B, A`B, A⊕B, A&B are A and B,

• the only immediate subformula of !A and ?A is A,

• 1, ⊥, 0, ⊤ and atomic formulas have no immediate subformula,

• the immediate subformulas of ∃x.A and ∀x.A are all the A[t/x] for all
first-order terms t,

• the immediate subformulas of ∃X.A and ∀X.A are all the A[B/X] for all
formulas B (with the appropriate number of parameters).
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Theorem 1.5.10 (Subformula property). A sequent Γ ⊢ ∆ is provable if and
only if it is the conclusion of a proof in which each intermediate conclusion is
made of subformulas of the formulas of Γ and ∆.

Proof. By the cut elimination theorem, if a sequent is provable, then it is prov-
able by a cut-free proof. In each rule except the cut rule, all formulas of the
premises are either formulas of the conclusion, or immediate subformulas of it,
therefore cut-free proofs have the subformula property.

The subformula property means essentially nothing in the second-order sys-
tem, since any formula is a subformula of a quantified formula where the quan-
tified variable occurs. However, the property is very meaningful if the sequent
Γ does not use second-order quantification, as it puts a strong restriction on the
set of potential proofs of a given sequent.

In particular, it implies that the first-order fragment without quantifiers is
decidable.

Theorem 1.5.11 (Consistency). The empty sequent ⊢ is not provable. Subse-
quently, it is impossible to prove both a formula A and its negation A⊥; it is
impossible to prove 0 or ⊥.

Proof. If a sequent is provable, then it is the conclusion of a cut-free proof.
In each rule except the cut rule, there is at least one formula in conclusion.
Therefore ⊢ cannot be the conclusion of a proof. The other properties are
immediate consequences: if ⊢ A⊥ and ⊢ A are provable, then by the cut rule
one gets empty conclusion, which is not possible. As particular cases, since 1
and ⊤ are provable, ⊥ and 0 are not, since they are equivalent to 1⊥ and ⊤⊥

respectively.

1.6 Reversibility and focusing

As already seen in Section 1.5.2, cut-free proofs play a central role when studying
provability. In particular when trying to determine whether a sequent ⊢ Γ is
provable or not, it is equivalent to wonder whether it has a cut-free proof or
not. This is a very important property for proof search since it induces a huge
restriction on the set of proofs one has to explore when trying to find a proof
of a given sequent. One can wonder whether it is possible to restrict even more
the set of proofs without loosing provability. That is to find constraints on
proofs such that the sequents provable with and without these constraints are
the same.

1.6.1 Reversibility

Definition 1.6.1 (Reversibility). A connective c is called reversible if for every
proof π : ⊢ Γ, c(A1, . . . , An), there is a proof π′ with the same conclusion in
which c(A1, . . . , An) is introduced by the last rule (i.e. principal).
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Remark 1.6.2. Now that we have Theorem 1.5.1, we can refine a bit Defini-
tion 1.2.2 with the following implications:

derivable without cuts ⇒ derivable with cuts ⇒ admissible
⊢ A
⊢ A`⊥

⊢ A&B

⊢ A
⊢ ?A

⊢ A, ?A

Example rules satisfy the given property but not the stronger ones, thus proving
that the reverse implications do not hold in general.

Lemma 1.6.3. The following reversed rules are derivable with cuts:

⊢ A`B,Γ
(`rev)

⊢ A,B,Γ
⊢ ⊥,Γ

(⊥rev)
⊢ Γ

⊢ A1 &A2,Γ
(&rev

i )
⊢ Ai,Γ

i ∈ {1, 2}

⊢ !A,Γ
(!rev)

⊢ A,Γ

⊢ ∀ξ.A,Γ
(∀rev)

⊢ A,Γ

Proof. Derivability results from the following proof schema (which relies on
considering proofs from Table 1.3 and removing their last rule):

•

(ax )
⊢ A,A⊥

(ax )
⊢ B,B⊥

(⊗)
⊢ A,B,A⊥ ⊗B⊥ ⊢ A`B,Γ

(cut)
⊢ A,B,Γ

•
(1)

⊢ 1 ⊢ ⊥,Γ
(cut)

⊢ Γ

•

(ax )
⊢ A,A⊥

(⊕1)
⊢ A,A⊥ ⊕B⊥ ⊢ A&B,Γ

(cut)
⊢ A,Γ

•

(ax )
⊢ B,B⊥

(⊕2)
⊢ B,A⊥ ⊕B⊥ ⊢ A&B,Γ

(cut)
⊢ B,Γ

•

(ax )
⊢ A,A⊥

(?)
⊢ A, ?A⊥ ⊢ !A,Γ

(cut)
⊢ A,Γ

•

(ax )
⊢ A,A⊥

(∃)
⊢ A,∃ξ.A⊥ ⊢ ∀ξ.A,Γ

(cut)
⊢ A,Γ
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Theorem 1.6.4. The negative connectives `, ⊥, & and ∀ are reversible.

Proof. For each connective c ∈ {`,⊥,&,∀}, we can apply the reversed rule
from Lemma 1.6.3 followed by the introduction rule of c to the proof of ⊢
Γ, c(A1, . . . , An):

⊢ A`B,Γ
(`rev)

⊢ A,B,Γ
(`)

⊢ A`B,Γ

⊢ ⊥,Γ
(⊥rev)

⊢ Γ
(⊥)

⊢ ⊥,Γ

⊢ A&B,Γ
(&rev

1 )
⊢ A,Γ

⊢ A&B,Γ
(&rev

2 )
⊢ B,Γ

(&)
⊢ A&B,Γ

⊢ ∀ξ.A,Γ
(∀rev)

⊢ A,Γ
(∀)

⊢ ∀ξ.A,Γ

In the (∀) case, this requires to choose a ξ which is not free in Γ (this is always
possible up to renaming). But a similar dependency over the context with !,
makes ! non reversible since it is not possible to apply (!) to ⊢ A,Γ in general
since Γ may not start with a ?.

A consequence of this fact is that, when searching for a proof of some sequent
⊢ Γ, one can always start by decomposing negative connectives in Γ without
losing provability. Applying this result to successive connectives, we can get
generalized formulations for more complex formulas. For instance:

⊢ Γ, (A`B)` (B & C) is provable

iff ⊢ Γ, A`B,B & C is provable

iff ⊢ Γ, A`B,B and ⊢ Γ, A`B,C are provable

iff ⊢ Γ, A,B,B and ⊢ Γ, A,B,C are provable

So without loss of provability, we can assume that any proof of ⊢ Γ, (A`B)`
(B & C) ends like:

⊢ Γ, A,B,B
(`)

⊢ Γ, A`B,B

⊢ Γ, A,B,C
(`)

⊢ Γ, A`B,C
(&)

⊢ Γ, A`B,B & C
(`)

⊢ Γ, (A`B)` (B & C)

In order to define a general statement for compound formulas, as well as
an analogous result for positive connectives, we need to give a proper status to
clusters of connectives of the same polarity.
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1.6.2 Generalized connectives and rules
Definition 1.6.5. A positive generalized connective is a parametrized formula
P [X1, . . . , Xn] made from the variables Xi using the connectives ⊗, ⊕, 1, 0.

A negative generalized connective is a parametrized formula N [X1, . . . , Xn]
made from the variables Xi using the connectives `, &, ⊥, ⊤.

If C[X1, . . . , Xn] is a generalized connectives (of any polarity), the dual of
C is the connective C∗ such that C∗[X⊥

1 , . . . , X
⊥
n ] = C[X1, . . . , Xn]

⊥.

It is clear that dualization of generalized connectives is involutive and ex-
changes polarities. We do not include quantifiers in this definition, mainly for
simplicity. Extending the notion to quantifiers would only require taking proper
care of the scope of variables.

Sequent calculus provides introduction rules for each connective. Negative
connectives have one rule, positive ones may have any number of rules, namely
2 for ⊕ and 0 for 0. We can derive introduction rules for the generalized con-
nectives by combining the different possible introduction rules for each of their
components.

Considering the previous example N [X1, X2, X3] = (X1 `X2)` (X2 &X3),
we can derive an introduction rule for N as

⊢ Γ, X1, X2, X2
(`)

⊢ Γ, X1 `X2, X2

⊢ Γ, X1, X2, X3
(`)

⊢ Γ, X1 `X2, X3
(&)

⊢ Γ, X1 `X2, X2 &X3
(`)

⊢ Γ, (X1 `X2)` (X2 &X3)

or

⊢ Γ, X1, X2, X2 ⊢ Γ, X1, X2, X3
(&)

⊢ Γ, X1, X2, X2 &X3
(`)

⊢ Γ, X1 `X2, X2 &X3
(`)

⊢ Γ, (X1 `X2)` (X2 &X3)

but these rules only differ by the commutation of independent rules. In particu-
lar, their premises are the same. The dual of N is P [X1, X2, X3] = (X1⊗X2)⊗
(X2 ⊕X3), for which we have two possible derivations:

⊢ Γ1, X1 ⊢ Γ2, X2
(⊗)

⊢ Γ1,Γ2, X1 ⊗X2

⊢ Γ3, X2
(⊕1)⊢ Γ3, X2 ⊕X3
(⊗)

⊢ Γ1,Γ2,Γ3, (X1 ⊗X2)⊗ (X2 ⊕X3)

⊢ Γ1, X1 ⊢ Γ2, X2
(⊗)

⊢ Γ1,Γ2, X1 ⊗X2

⊢ Γ3, X3
(⊕2)⊢ Γ3, X2 ⊕X3
(⊗)

⊢ Γ1,Γ2,Γ3, (X1 ⊗X2)⊗ (X2 ⊕X3)

These are actually different, in particular their premises differ. Each possible
derivation corresponds to the choice of one side of the ⊕ connective.

We can remark that the branches of the negative inference precisely corre-
spond to the possible positive inferences:

• the first branch of the negative inference has a premise X1, X2, X2 and
the first positive inference has three premises, holding X1, X2 and X2

respectively.

• the second branch of the negative inference has a premise X1, X2, X3 and
the second positive inference has three premises, holding X1, X2 and X3

respectively.

This phenomenon extends to all generalized connectives.
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Definition 1.6.6. The branching of a generalized connective P [X1, . . . , Xn] is
the multiset IP of multisets over {1, . . . , n} defined inductively as

IP⊗Q := [I + J | I ∈ IP , J ∈ IQ],
IP⊕Q := IP + IQ,
I1 := [[]],

I0 := [],

IXi := [[i]].

The branching of a negative generalized connective is the branching of its dual.
Elements of a branching are called branches.

In the example above, the branching will be [[1, 2, 2], [1, 2, 3]], which corre-
sponds to the branches of the negative inference and to the cases of positive
inference.

Definition 1.6.7. Let I be a branching. Write I as [I1, . . . , Ik] and write each
Ij as [ij,1, . . . , ij,ℓj ]. The derived rule for a negative generalized connective N
with branching I is

⊢ Γ, Ai1,1 , . . . , Ai1,ℓ1 · · · ⊢ Γ, Aik,1
, . . . , Aik,ℓk

(N)
⊢ Γ, N [A1, . . . , An]

For each branch I = [i1, . . . , iℓ] of a positive generalized connective P , the
derived rule for branch I of P is

⊢ Γ1, Ai1 · · · ⊢ Γℓ, Aiℓ
(PI)

⊢ Γ1, . . . ,Γℓ, P [A1, . . . , An]

The reversibility property of negative connectives can be rephrased in a
generalized way as follows:

Theorem 1.6.8. Let N be a negative generalized connective. A sequent ⊢
Γ, N [A1, . . . , An] is provable if and only if, for each [i1, . . . , ik] ∈ IN , the sequent
⊢ Γ, Ai1 , . . . , Aik is provable.

The corresponding property for positive connectives is the focusing property,
defined in the next section.

1.6.3 Focusing
Definition 1.6.9. A formula is positive if it has a principal connective among
⊗, ⊕, 1, 0. It is called negative if it has a principal connective among `, &, ⊥,
⊤. It is called neutral if it is neither positive nor negative.

If we extended the theory to include quantifiers in generalized connectives,
then the definition of positive and negative formulas would be extended to in-
clude them too.
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Definition 1.6.10. A proof π : ⊢ Γ, A is said to be positively focused on A if
it has the shape

π1 : ⊢ Γ1, Ai1 · · · πℓ : ⊢ Γℓ, Aiℓ
(P[i1,...,iℓ])⊢ Γ1, . . . ,Γℓ, P [A1, . . . , An]

where P is a positive generalized connective, the Ai are non-positive and A =
P [A1, . . . , An]. The formula A is called the focus of the proof π.

In other words, a proof is positively focused on a conclusion A if its last rules
build A from some of its non-positive subformulas in one cluster of inferences.
Note that this notion only makes sense for a sequent made only of positive
formulas, since by this definition a proof is obviously positively focused on any of
its non-positive conclusions, using the degenerate generalized connective P [X] =
X.

Theorem 1.6.11. A sequent ⊢ Γ is cut-free provable if and only if it is provable
by a cut-free proof that is positively focused.

Proof. We reason by induction on a (cut-free) proof π of Γ. As noted above,
the result trivially holds if Γ has a non-positive formula. We can thus assume
that Γ contains only positive formulas and reason on the nature of the last rule,
which is necessarily the introduction of a positive connective (it cannot be an
axiom rule because an axiom always has at least one non-positive conclusion).

Suppose that the last rule of π introduces a tensor, so that π is

ρ : ⊢ Γ, A θ : ⊢ ∆, B
(⊗)

⊢ Γ,∆, A⊗B

By induction hypothesis, there are positively focused proofs ρ′ : ⊢ Γ, A and
θ′ ⊢ ∆, B. If A is the focus of ρ′ and B is the focus of θ′, then the proof

ρ′ : ⊢ Γ, A θ′ : ⊢ ∆, B
(⊗)

⊢ Γ,∆, A⊗B

is positively focused on A ⊗ B, so we can conclude. Otherwise, one of the two
proofs is positively focused on another conclusion. Without loss of generality,
suppose that ρ′ is not positively focused on A. Then it decomposes as

ρ1 : ⊢ Γ1, Ci1 · · · ρℓ : ⊢ Γℓ, Ciℓ

⊢ Γ1, . . . ,Γℓ, P [C1, . . . , Cn]

where the Ci are not positive and A belongs to some context Γj that we will
write Γ′

j , A. Then we can conclude with the proof

ρ1 : ⊢ Γ1, Ci1 · · ·
ρj : ⊢ Γj , A,Cij θ : ⊢ ∆, B

(⊗)
⊢ Γj ,∆, A⊗B,Cij · · · ρℓ : ⊢ Γℓ, Ciℓ

⊢ Γ1, . . . ,Γℓ,∆, A⊗B,P [C1, . . . , Cn]



46 CHAPTER 1. SEQUENTS

which is positively focused on P [C1, . . . , Cn].
If the last rule of π introduces a ⊕, we proceed the same way except that

there is only one premise. If the last rule of π introduces a 1, then it is the only
rule of π, which is thus positively focused on this 1.

As in the reversibility theorem, this proof only makes use of commutation
of independent rules.

These results say nothing about exponential modalities, because they respect
neither reversibility nor focusing. However, if we consider the fragment of LL
which consists only of multiplicative and additive connectives, we can restrict
the proof rules to enforce focusing without loss of expressiveness.

1.7 Variations
In order to discuss some varations on the sequent calculus rules, we go back to
two-sided sequents in this section.

1.7.1 Exponential rules
The promotion rule, on the right-hand side for example:

!A1, . . . , !An ⊢ B, ?B1, . . . , ?Bm
(!R)

!A1, . . . , !An ⊢ !B, ?B1, . . . , ?Bm

can be replaced by a multi-functorial promotion rule:

A1, . . . , An ⊢ B,B1, . . . , Bm
(!mf
R )

!A1, . . . , !An ⊢ !B, ?B1, . . . , ?Bm

and digging rules:

Γ ⊢ ??A,∆
(digR)

Γ ⊢ ?A,∆

Γ, !!A ⊢ ∆
(digL)

Γ, !A ⊢ ?A,∆

without modifying the provability:

!A1, . . . , !An ⊢ B, ?B1, . . . , ?Bm
(!mf
R )

!!A1, . . . , !!An ⊢ !B, ??B1, . . . , ??Bm
(digR)

!!A1, . . . , !!An ⊢ !B, ?B1, . . . , ?Bm
(digL)

!A1, . . . , !An ⊢ !B, ?B1, . . . , ?Bm

A1, . . . , An ⊢ B,B1, . . . , Bm
(!L)

!A1, . . . , !An ⊢ B,B1, . . . , Bm
(?R)

!A1, . . . , !An ⊢ B, ?B1, . . . , ?Bm
(!R)

!A1, . . . , !An ⊢ !B, ?B1, . . . , ?Bm

Γ ⊢ ??A,∆

(ax )
?A ⊢ ?A

(?L)
??A ⊢ ?A

(cut)
Γ ⊢ ?A,∆
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Note that digging violates the subformula property.

In presence of the digging rule, the multiplexing rule
Γ ⊢ A(n),∆

(mplex)
Γ ⊢ ?A,∆

(remember that A(n) stands for n occurrences of formula A) is equivalent (for
provability) to the triple of rules: contraction, weakening, dereliction.

Another possible exponential rule is the selection rule:

Γ ⊢ A, ?A,∆
(sel)

Γ ⊢ ?A,∆

One can derive selection from dereliction and contraction and one can derive
dereliction from selection and weakening. Thus in presence of contraction and
weakening, selection and dereliction generate the same provable sequents.

1.7.2 Non-symmetric sequents

The same remarks that lead to the definition of the one-sided calculus can lead
to the definition of other simplified systems:

• A one-sided variant with sequents of the form Γ ⊢ could be defined.

• When considering formulas up to De Morgan duality, an equivalent sys-
tem is obtained by considering only the left and right rules for positive
connectives (or the ones for negative connectives only, obviously).

• Intuitionistic Linear Logic is the two-sided system where the right-hand
side is constrained to always contain exactly one formula (with a few
associated restrictions), see below.

• Similar restrictions are used in various semantics and proof search for-
malisms.

1.7.2.1 Intuitionistic Linear Logic

The connectives of Intuitionistic Linear Logic (ILL) are not exactly the same as
in LL since not only some connectives are rejected (_⊥, `, ⊥ and ?), but also
⊸ is now a primitive connective. The ILL formulas are then obtained as:

I ::= α | I ⊗ I | I ⊸ I | 1 | I ⊕ I | I & I | 0 | ⊤ | !I | ∀ξ.I | ∃ξ.I

Sequents are two sided but their right-hand side contains exactly one formula:
Γ ⊢ I.

The rules are described in Table 1.5. For each connective of ILL, they are
obtained from the corresponding rules of Table 1.2 by restricting to exactly one
formula on the right-hand side of the sequents. The case of linear implication
is slightly different since it is not a primitive connective of LL. However the
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Identity group

(ax )
I ⊢ I

Γ ⊢ I ∆, I ⊢ K
(cut)

Γ,∆ ⊢ K

Multiplicative group
Γ, I, J ⊢ K

(⊗L)
Γ, I ⊗ J ⊢ K

Γ ⊢ K
(1L)

Γ,1 ⊢ K
Γ ⊢ I ∆ ⊢ J

(⊗R)
Γ,∆ ⊢ I ⊗ J

(1R)⊢ 1

Γ ⊢ I ∆, J ⊢ K
(⊸L)

Γ,∆, I ⊸ J ⊢ K
Γ, I ⊢ J

(⊸R)
Γ ⊢ I ⊸ J

Additive group
Γ, I ⊢ K Γ, J ⊢ K

(⊕L)
Γ, I ⊕ J ⊢ K

(0L)
Γ,0 ⊢ K

Γ ⊢ Ii
(⊕Ri)

Γ ⊢ I1 ⊕ I2

Γ, Ii ⊢ K
(&Li)

Γ, I1 & I2 ⊢ K
Γ ⊢ I Γ ⊢ J

(&R)
Γ ⊢ I & J

(⊤R)
Γ ⊢ ⊤

Quantifier group

In the rules (∃1L) (resp. (∃2L)) and (∀1R) (resp. (∀2R)),
the variable x (resp. X) must not occur free in Γ nor in K.

Γ, I ⊢ K
(∃1L)

Γ,∃x.I ⊢ K
Γ, I ⊢ K

(∃2L)
Γ,∃X.I ⊢ K

Γ ⊢ I[t/x]
(∃1R)

Γ ⊢ ∃x.I
Γ ⊢ I[J/X]

(∃2R)
Γ ⊢ ∃X.I

Γ, I[t/x] ⊢ K
(∀1L)

Γ,∀x.I ⊢ K
Γ, I[J/X] ⊢ K

(∀2L)
Γ,∀X.I ⊢ K

Γ ⊢ I
(∀1R)

Γ ⊢ ∀x.I
Γ ⊢ I

(∀2R)
Γ ⊢ ∀X.I

Exponential group
Γ, I ⊢ K

(!L)
Γ, !I ⊢ K

!Γ ⊢ I
(!R)

!Γ ⊢ !I

Structural group
Γ1, I, J,Γ2 ⊢ K

(exL)
Γ1, J, I,Γ2 ⊢ K

Γ ⊢ K
(wL)

Γ, !I ⊢ K
Γ, !I, !I ⊢ K

(cL)
Γ, !I ⊢ K

Table 1.5: Inference rules for Intuitionistic Linear Logic sequent calculus
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ILL rules can nevertheless be obtained by restricting the following derivations
to intuitionistic sequents:

Γ ⊢ A,∆
(nL)

Γ, A⊥ ⊢ ∆ Γ′, B ⊢ ∆′
(`L)

Γ,Γ′, A⊥ `B ⊢ ∆,∆′

Γ, A ⊢ B,∆
(nR)

Γ ⊢ A⊥, B,∆
(`R)

Γ ⊢ A⊥ `B,∆

As a consequence, by translating each intuitionistic connective by the corre-
sponding classical one, and I ⊸ J as I⊥ ` J , each intuitionistic proof of a
sequent Γ ⊢ I is translated into a classical proof of Γ ⊢ I.

However the converse is not true. Some intuitionistic formulas not prov-
able in intuitionistic Linear Logic are nevertheless provable once embedded
in classical Linear Logic. This is the case of ((((0 ⊸ 1) ⊸ 1) ⊸ 0) ⊸
0) ⊸ 1 which is not provable in ILL but whose associate classical formula
((((⊤` 1)⊗⊥)` 0)⊗⊤)` 1 is provable in LL:

(⊤R)⊢ ⊤,1,0
(`R)⊢ ⊤` 1,0

(ax )
⊢ ⊥,1

(⊗R)
⊢ (⊤` 1)⊗⊥,0,1

(`R)
⊢ ((⊤` 1)⊗⊥)` 0,1

(⊤R)⊢ ⊤
(⊗R)

⊢ (((⊤` 1)⊗⊥)` 0)⊗⊤,1
(`R)

⊢ ((((⊤` 1)⊗⊥)` 0)⊗⊤)` 1

1.7.3 Mix rules

It is quite common to consider mix rules:

(mix 0)⊢
Γ ⊢ ∆ Γ′ ⊢ ∆′

(mix 2)
Γ,Γ′ ⊢ ∆,∆′

They immediately impact provability since the empty sequent ⊢ becomes
provable. While this could lead to a degeneracy of the system if structural rules
were fully available, it has not such a deep impact on Linear Logic. Let us
consider two (different) notions of consistency.

Definition 1.7.1 (Strong Consistency). A variant of Linear Logic (in which the
cut rule is admissible) is strongly consistent if one of the following equivalent
properties holds:

• ⊢ is not provable

• ⊢ ⊥ is not provable

• 1 ⊢ ⊥ is not provable

• there is no formula A such that both ⊢ A and ⊢ A⊥ are provable
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• there is no formula A such that ⊢ A⊗A⊥ is provable

Definition 1.7.2 (Weak Consistency). A variant of Linear Logic (in which the
cut rule is admissible) is weakly consistent if one of the following equivalent
properties holds:

• ⊢ 0 is not provable

• there exists a formula which is not provable

• there exists a formula A such that ⊢ A⊗A⊥ is not provable

While LL is strongly consistent (Theorem 1.5.11), its extension with mix
rules is only weakly consistent. To prove this we also rely on cut elimination.
The proof described in Section 1.5 can be easily adapted by simply adding the
following new reduction cases:

π1 : ⊢ Γ, C π2 : ⊢ Γ′
(mix 2)

⊢ Γ, C,Γ′ π3 : ⊢ C⊥,∆
(cut)

⊢ Γ,∆,Γ′

comm(mix)−→
π1 : ⊢ Γ, C π3 : ⊢ C⊥,∆

(cut)
⊢ Γ,∆ π2 : ⊢ Γ′

(mix 2)
⊢ Γ,∆,Γ′

(and the symmetric one if C belongs to the right premise of the (mix 2) rule).
Now weak consistency comes from the fact that, in a cut-free proof, there is

no rule with possible conclusion ⊢ 0.

1.7.4 Dyadic sequent calculus

We consider here an alternative to the one-sided sequent calculus of Linear
Logic which relies on a different management of the (restricted) structural rules.
Sequents are built from two lists of formulas and denoted ⊢ Σ | Γ. Intuitively
elements of Σ are prefixed with an implicit ? connective. The rules are presented
on Table 1.6.

Theorem 1.7.3 (Dyadic provability). The sequent ⊢ Γ | ∆ is provable in the
dyadic system if and only if the sequent ⊢ ?Γ,∆ is provable in the one-sided
system of Table 1.4.

Proof. The embedding from the dyadic system to usual one-sided rules goes di-
rectly since the translation of each rule happens to be derivable. In the converse
direction, one starts from a proof in the usual system and commutes weakening
and contraction rules as far as possible towards the leaves of the proof. The
obtained proof can be easily turned into a dyadic one.
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Identity group

(ax )
⊢ Σ | F⊥, F

⊢ Σ | F,Γ ⊢ Σ | F⊥,∆
(cut)

⊢ Σ | Γ,∆

Multiplicative group
⊢ Σ | F,Γ ⊢ Σ | G,∆

(⊗)
⊢ Σ | F ⊗G,Γ,∆

(1)
⊢ Σ | 1

⊢ Σ | F,G,Γ
(`)

⊢ Σ | F `G,Γ

⊢ Σ | Γ
(⊥)

⊢ Σ | ⊥,Γ

Additive group
⊢ Σ | Fi,Γ

(⊕i)
⊢ Σ | F1 ⊕ F2,Γ

⊢ Σ | F,Γ ⊢ Σ | G,Γ
(&)

⊢ Σ | F &G,Γ
(⊤)

⊢ Σ | ⊤,Γ

Quantifier group

In the rule (∀1) (resp. (∀2)), the variable x (resp. X) must not occur free in Σ
and Γ.

⊢ Σ | F [t/x],Γ
(∃1)

⊢ Σ | ∃x.F,Γ
⊢ Σ | F [B/X],Γ

(∃2)
⊢ Σ | ∃X.F,Γ

⊢ Σ | F,Γ
(∀1)

⊢ Σ | ∀x.F,Γ
⊢ Σ | F,Γ

(∀2)
⊢ Σ | ∀X.F,Γ

Exponential group
⊢ Σ | F

(!)
⊢ Σ | !F

⊢ Σ, F | Γ
(?)

⊢ Σ | ?F,Γ

Structural group
⊢ Σ | Γ, F,G,∆

(ex )
⊢ Σ | Γ, G, F,∆

⊢ Σ, F,Σ′ | F,Γ
(sel)

⊢ Σ, F,Σ′ | Γ

Table 1.6: Inference rules for dyadic sequent calculus
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1.8 Embedding into classical logic
Linear Logic provides a refinement of classical logic by constraining structural
rules. An key consequence is the emergence of the distinction between multi-
plicative and additive connectives related through the exponential ones. It is
possible to see that this refinement is faithful to classical provability since if
one decides to put back structural rules and to forget the distinction between
multiplicative and additive connectives, one can map proofs of Linear Logic into
valid proofs of classical logic. More formally we define the notion of skeleton
of linear formulas and Linear Logic proofs.

The skeleton sk(A) of a formula A is obtained by applying the following
translation table to each linear connective:

⊥ 7→ ¬
⊗ 7→ ∧ & 7→ ∧
` 7→ ∨ ⊕ 7→ ∨
1 7→ ⊤ ⊤ 7→ ⊤
⊥ 7→ ⊥ 0 7→ ⊥
! 7→ ? 7→
∀ 7→ ∀ ∃ 7→ ∃

Note the exponential connectives are simply erased.

Theorem 1.8.1 (Skeleton). Given a (two-sided) proof π of the sequent Γ ⊢ ∆,
there exists a classical proof (see Table 1.7) of sk(Γ) ⊢ sk(∆).

Proof. We prove for each rule of Table 1.2 that its image under sk is derivable
using the rules of Table 1.7:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆
7→

sk(Γ1) ⊢ sk(∆1) . . . sk(Γn) ⊢ sk(∆n)

sk(Γ) ⊢ sk(∆)

It is immediate for most of the rules. Let us focus on the richer case of the ⊗
rules:

Γ, A,B ⊢ ∆
(⊗L)

Γ, A⊗B ⊢ ∆
7→

sk(Γ), sk(A), sk(B) ⊢ sk(∆)
(∧L1)

sk(Γ), sk(A) ∧ sk(B), sk(B) ⊢ sk(∆)
(∧L2)

sk(Γ), sk(A) ∧ sk(B), sk(A) ∧ sk(B) ⊢ sk(∆)
(cL)

sk(Γ), sk(A) ∧ sk(B) ⊢ sk(∆)

Γ ⊢ A,∆ Γ′ ⊢ B,∆′
(⊗R)

Γ,Γ′ ⊢ A⊗B,∆,∆′

7→

sk(Γ) ⊢ sk(A), sk(∆)
(wL)

sk(Γ), sk(Γ′) ⊢ sk(A), sk(∆)
(wR)

sk(Γ), sk(Γ′) ⊢ sk(A), sk(∆), sk(∆′)

sk(Γ′) ⊢ sk(B), sk(∆′)
(wL)

sk(Γ), sk(Γ′) ⊢ sk(B), sk(∆′)
(wR)

sk(Γ), sk(Γ′) ⊢ sk(B), sk(∆), sk(∆′)
(∧R)

sk(Γ), sk(Γ′) ⊢ sk(A) ∧ sk(B), sk(∆), sk(∆′)
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Identity and negation group

(ax )
Γ, A ⊢ A,∆

Γ ⊢ A,∆ Γ′, A ⊢ ∆′
(cut)

Γ,Γ′ ⊢ ∆,∆′
Γ ⊢ A,∆

(nL)
Γ,¬A ⊢ ∆

Γ, A ⊢ ∆
(nR)

Γ ⊢ ¬A,∆

Logical group
Γ, A ⊢ ∆ Γ, B ⊢ ∆

(∨L)
Γ, A ∨B ⊢ ∆

(⊥L)
Γ,⊥ ⊢ ∆

Γ ⊢ Ai,∆
(∨Ri)

Γ ⊢ A1 ∨A2,∆

Γ, Ai ⊢ ∆
(∧Li)

Γ, A1 ∧A2 ⊢ ∆

Γ ⊢ A,∆ Γ ⊢ B,∆
(∧R)

Γ ⊢ A ∧B,∆
(⊤R)

Γ ⊢ ⊤,∆

Quantifier group

In the rules (∃1L) (resp. (∃2L)) and (∀1R) (resp. (∀2R)),
the variable x (resp. X) must not occur free in Γ nor in ∆.

Γ, A ⊢ ∆
(∃1L)

Γ,∃x.A ⊢ ∆

Γ, A ⊢ ∆
(∃2L)

Γ,∃X.A ⊢ ∆

Γ ⊢ A[t/x],∆
(∃1R)

Γ ⊢ ∃x.A,∆
Γ ⊢ A[B/X],∆

(∃2R)
Γ ⊢ ∃X.A,∆

Γ, A[t/x] ⊢ ∆
(∀1L)

Γ,∀x.A ⊢ ∆

Γ, A[B/X] ⊢ ∆
(∀2L)

Γ,∀X.A ⊢ ∆

Γ ⊢ A,∆
(∀1R)

Γ ⊢ ∀x.A,∆
Γ ⊢ A,∆

(∀2R)
Γ ⊢ ∀X.A,∆

Structural group
Γ1, A,B,Γ2 ⊢ ∆

(exL)
Γ1, B,A,Γ2 ⊢ ∆

Γ ⊢ ∆1, A,B,∆2
(exR)

Γ ⊢ ∆1, B,A,∆2

Γ ⊢ ∆
(wL)

Γ, A ⊢ ∆

Γ ⊢ ∆
(wR)

Γ ⊢ A,∆
Γ, A,A ⊢ ∆

(cL)
Γ, A ⊢ ∆

Γ ⊢ A,A,∆
(cR)

Γ ⊢ A,∆

Table 1.7: Inference rules for two-sided Classical Logic sequent calculus
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Chapter 2

Proof nets

We give some basic results of the theory of proof nets for multiplicative linear
logic.

Warning! Only the case of multiplicative proof nets is currently in a satisfac-
tory state, although some introductory material and pictures are missing. The
treatment of MELL is under construction.

2.1 Introduction

Proof nets are one of the most striking contributions of linear logic. At first
sight, they are the analogue of natural deduction for linear logic: a logical
syntax avoiding the bureaucracy of sequent calculus. More precisely, they can
be considered as a representation of proofs in the one-sided fragment of sequent
calculus — see Section 1.3.5 — up to some inessential commutations of rules.

Due to their graphical nature, and to the many (essentially equivalent but
technically distinctive) choices one can make to define them, proof nets are also
one of the less consensual topics within the theory of linear logic. Their definition
varies throughout the literature, which makes the reuse of results somehow
fragile. And, up to this point, there is no published reference text covering
the details of the most basic definitions and fundamental results, starting from
the ideal case of MLL without units to the simulation of the β-reduction of
the λ-calculus in MELL proof nets, via confluence and strong normalizability of
each considered fragment. The present chapter aims precisely to address this
demand.

A few words about our graph theoretical terminology: We assume
basic knowledge in graph theory. In particular, the notion of paths and cycles
will play a prominent rôle. We provide a complete review of the definitions and
results we use in Appendix A, but for the most part it will suffice to make the
setting and terminology precise:

55
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• we consider directed graphs only (that we simply call graphs), which are
given by a set of nodes N , a set of arrows A, and two functions s (source)
and t (target) from arrows to nodes;

• we call edge the data of an arrow and a direction (forward or backward)
in which the arrow is crossed, and we denote a+ (resp. a−) for the arrow
a crossed forward (resp. backward);

• paths are undirected in general, and are given by a source node and a
sequence of edges (one obtains a directed path if all the underlying arrows
are crossed forward);

• a path is simple if each arrow is crossed at most once (in whatever direc-
tion) and a cycle is a non-empty simple closed path.

To the newcomer: The reader intending to discover proof nets by reading
this chapter should jump directly to Section 2.2, which presents multiplicative
proof nets. These form the most satisfactory version of proof nets, especially
in the unit-free case: nodes in a proof net correspond exactly with inference
rules in a proof tree, cut elimination is strongly confluent and terminating, and
the translation of proof trees is exactly characterized by a graphical correctness
criterion.

For wider fragments, every existing notion of proof net is an attempt to
recover the features of this ideal case in a more general setting.

To the more knowledgeable reader: Our choice of definition of proof nets
is guided by our desire to rely on standard results of graph theory. We follow
the “rules as nodes/formulas as arrows” (rather than “formulas as nodes/rules
as hyperarrows”) approach. We also avoid the introduction of half edges or
dangling wires corresponding to conclusions: for that reason, we have explicit
conclusion nodes.

Typing is not mandatory: the basic definition of proof structure is untyped,
and typing is seen as a labelling of arrows. We call proof nets the structures sat-
isfying the Danos–Regnier acyclicity criterion, and connected proof nets those
that satisfy the acyclicity-and-connectedness criterion. In the unit-free multi-
plicative case, a proof tree is thus translated into a typed connected proof net.

The most peculiar feature of our presentation is the proof of sequentializa-
tion. It relies on the so-called Bungee Jumping method, to first obtain an order
on arrows, such that the target of a maximal (non-conclusion) arrow is either
terminal `-node or a splitting ⊗-node Section 2.2.4.4. This method leverages
general results on switching paths (a path in a proof structure is a switching
path if is also a path in some switching graph of the structure), that we develop
in Section 2.2.4.3. The Bungee Jumping method can be applied to proof nets,
without the connectedness assumption, to sequentialize in the presence of (mix )
rules. We first treat the connected case, though, so that newcomers can get
acquainted with the subject in the most ideal case.
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2.2 Multiplicative Proof Nets
We first consider multiplicative proof nets without units, i.e. proof nets for
the MLLv fragment — see Section 1.4. These will represent proofs in the one-
sided fragment of sequent calculus — see Section 1.3.5 — up to some inessential
commutations of rules. Note in particular that we consider formulas up to
De Morgan’s laws so that linear negation A 7→ A⊥ is an involution — see
Section 1.3.5 again.

2.2.1 Proof structures
2.2.1.1 Definition of proof structures

Recall that the definitions and abstract properties of graphs we are going to use
can be found in Appendix A.

An untyped multiplicative proof structure S is given by:

• a directed acyclic graph G(S) — the incoming arrows of a node are called
its premises, the outgoing arrows are its conclusions;

• a labelling of the nodes of G(S) with labels in {ax , cut ,⊗,`, •} — a node
with label k is called a k-node — such that:

– each ax -node has exactly two conclusions and no premise;

– each cut-node has exactly two premises and no conclusion;

– each ⊗-node or `-node has exactly two premises and one conclusion;

– each •-node has exactly one premise and no conclusion;

• an ordering of the premises of each ⊗-node and of each `-node — the first
premise is called the left premise of the node, and the second one is the
right premise;

• a linear ordering on the •-nodes, which we call the interface, or conclu-
sion sequence, of S.

A •-node is called a conclusion node.
Some notions do not depend on the ordering of edges (premises of ⊗- and

`-nodes) nor of conclusion nodes (interface): this is in particular the case for
the graphical notion of correctness that we will study in Sections 2.2.2 and 2.2.4.
We will call unordered proof structure the object obtained by forgetting the
interface and the ordering of premises in a proof structure: this is simply given
by a directed acyclic graph, together with a labelling of nodes, satisfying the
same constraints as those for proof structures.

Nodes which are not conclusion nodes are called internal nodes of the proof
structure. A premise node of some node N is any internal node N0 such that
one conclusion of N0 is also a premise of N . Nodes that are not premises of
internal nodes (or, equivalently, which are premises of •-nodes only) are called
terminal. Note that cut-nodes are both internal and terminal. By definition a
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non-empty proof structure must contain at least one ax node and at least one
terminal node.

An arrow is called a conclusion arrow (resp. an internal arrow or ter-
minal arrow), when its target is a conclusion (resp. internal or terminal) node.
Moreover, we may indifferently call conclusion of the proof structure any of a
conclusion node or arrow, depending on the context.

In the graphical representation of a proof structure, we do not mention
explicitly the direction of arrows, but we draw them in such a way that direction
is represented in a top-down way, which is always possible thanks to directed
acyclicity. Nodes are depicted as circles, each with its node label, except for
conclusion nodes which are simply represented as bullets. We use the convention
that the interface is given by the order in which the conclusions appear at the
bottom, from left to right.

Example 2.2.1 (Untyped Proof Structure). Consider the untyped proof structure

ax

⊗

ax

ax

` `
⊗

which has 9 nodes (7 internal ones), 2 conclusions and 2 terminal nodes above
these conclusions: a ⊗-node and a `-node.

This graphical depiction makes evident that we should actually consider
proof structures up to “renaming” of internal nodes. More precisely we say two
proof structures S and S ′ are isomorphic if there exists a graph isomorphism
Φ : G(S) →̃ G(S ′), preserving the labelling of nodes, the ordering of premises
and the interface. In the following, unless explicitly stated, we will identify
isomorphic proof structures: it should be clear that all the notions we define
in the next sections (typing, correctness, cut elimination, etc.) are compatible
with such isomorphisms.

The empty proof structure E is the only proof structure whose underlying
graph is empty. Given two proof structures S1 and S2, we write S1 +S2 for the
sum of proof structures, with G(S1 + S2) = G(S1) + G(S2) and such that:
the labelling of nodes and the order of premises is inherited from those of S1
and S2; and the interface is the concatenation of those of S1 and S2. Up to
isomorphism, this operation is associative, and the empty proof structure is the
neutral element: for every proof structures S0, S1, S2, we have S1+(S2+S3) =
(S1 +S2) +S3, and S0 + E = E +S0 = S0. Note that it is not commutative due
to the ordering of the interface (although it induces a commutative operation
on unordered proof structures).

We may depict an arbitrary structure S by
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A A⊥

ax A A⊥

cut

A B

⊗

A⊗B

A B

`
A`B

Figure 2.1: Typing of proof structures.

S

where the larger conclusion dot stands for an arbitrary number of conclusions.
Then the sum S1 + S2 is naturally depicted by

S1 S2
.

Many notions and results about proof structures involve the notion of path:
a path in S is just a path in G(S). Depending on the context, we will in fact
consider various restrictions of that notion. For instance, we will call descent
path any path in S that is a directed path of G(S): graphically, these are the
paths going downwards. Since G(S) is directed acyclic, it is immediate that:

• no descent path is a cycle;

• every descent path is a simple path;

• the length of descent paths is bounded.

A full descent path is a descent path that cannot be extended downwards (it
is not a strict prefix of another descent path): the target of a full descent path
must be a cut-node or a conclusion. Note that each arrow in a proof structure
is the first arrow of exactly one full descent path: except for ax -nodes, which
have no premise arrow, each node has at most one conclusion.

2.2.1.2 Typed proof structures

A typing of an untyped proof structure is a labelling of its arrows with formulas
of MLLv — the label of an arrow is called its type — such that:

• the conclusions of an ax -node (resp. the premises of a cut-node) have dual
types;

• if the left premise of a ⊗-node (resp. a `-node) has type A and its right
premise has type B then its conclusion has type A⊗B (resp. A`B).
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We depict these constraints in Fig. 2.1. A typed proof structure is given by
an untyped proof structure together with such a typing. With the conclusion
sequence of a typed proof structure S is associated the conclusion sequent
of S, i.e. the sequence of the types of its conclusions (in the order given by the
interface of S). Note that the empty graph is a typed proof structure, whose
conclusion is the empty sequent ⊢.
Example 2.2.2 (Typed Proof Structure). We can type the previous example of
untyped proof structure as follows

A A⊥

ax

⊗

A⊗A⊥

A⊥ A A⊥ A

ax

ax

`
A⊥ `A

`

⊗

(A⊗A⊥)⊗ (A⊥ `A) A⊥ `A

yielding a typed proof structure with conclusion ⊢ (A⊗A⊥)⊗(A⊥`A), A⊥`A.
Example 2.2.3 (Non typeable Proof Structure). It is easy to check that the
following proof structures do not admit any typing:

Sclash =

ax

`
ax

`
cut

and Sfix =

ax

⊗

ax

cut

.

Indeed, in Sclash, it is impossible to type the premises of the cut-node with dual
types, because the main connective must be ` on both sides. And in Sfix, the
conclusion of the ⊗-node must be typed with some formula of the form A⊗B,
but the constraints on ax - and cut-nodes impose that B = A ⊗ B, which is
impossible.

Note that the previous two examples of untypeable proof structures involve
cut-nodes. Indeed, any cut-free proof structure is typeable: it suffices to pick
a suitable typing of the conclusions of ax -nodes, and to propagate the typing
from top to bottom. More precisely:

Proposition 2.2.4 (Typings of proof structures). Given a proof structure S,
each typing of S is uniquely determined by its value on the conclusions of ax -
nodes. Moreover, if S is cut-free, any choice of dual formulas for the conclusions
of each ax -node of S induces a typing of the whole proof structure.

Proof. Since G(S) is a directed acyclic graph, we can:
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• start from a typing of the conclusions of each ax -nodes with dual types;

• deduce the type of the conclusion of each ⊗- or `-node from that of its
premises.

This determines uniquely a type for all the arrows of S. If the types thus
assigned to premises of cut-nodes are dual formulas, then we obtain a typing of
the proof structure; otherwise, there is no typing with the choice of axioms we
started with.

Remark 2.2.5. In presence of typing, the directed acyclicity requirement on
G(S) is redundant: typing conditions are sufficient to ensure that there is no
directed cycle. Indeed the only nodes with both premises and conclusions (i.e.
incoming and outgoing arrows) are those labelled ⊗ and `: in this case the
definition imposes that premises are typed with an immediate subformula of
the conclusion.

In the more general setting of multiplicative-exponential proof nets to be
introduced later, this will no longer hold and directed acyclicity must be required
explicitly. Moreover, the notion of untyped structure is also relevant per se: for
instance, typing plays no rôle in the correctness criteria nor in the definition of
cut elimination.

In the following, we will simply call proof structure any untyped proof struc-
ture, that might or might not be associated with a typed proof structure.

2.2.1.3 Translation of proof trees into typed proof structures

Recall that the (one-sided) rules of the sequent calculus MLLv are those of the
identity and multiplicative groups in Table 1.2, plus the exchange rule (ex ).

A proof π of MLLv can be translated into a typed proof structure ps(π)
with the same conclusion sequent. The internal nodes of ps(π) correspond with
the rules of π (except for exchange rules), and each node is labelled with the
name of its corresponding rule. The premises and conclusions of each node are
labelled with active formulas of the corresponding rule; in particular the con-
clusion of a `- or ⊗-node is labelled with the principal formula. It is important
that we treat the exchange rule explicitly, to keep the interface of the proof
structure consistent with the occurrences of formulas in the conclusion sequent:
the translation of the (ex ) amounts to reordering the interface.

Definition 2.2.6 (Desequentialization of proof trees). With each proof π of
MLLv, we associate a typed proof structure ps(π) by induction on the structure
of π:

• An (ax ) rule (ax )
⊢ A⊥, A is translated into an ax -node with conclusions

labelled A⊥ and A which have •-nodes as targets.1

1To define the proof structure formally we should also give the interface: we order the
conclusions to match the sequent ⊢ A⊥, A. In the remaining cases, we keep this information
implicit, as it is univocally guided by the shape of inference rules, and it is faithfully reflected
in our depictions of the resulting structures. We apply the same policy to the ordering of
premises of ⊗- and `-nodes.
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ax

A⊥ A

• If π1 is translated into S1 = ps(π1) and π2 is translated into S2 = ps(π2),

then with the proof

π1

⊢ A,Γ

π2

⊢ A⊥,∆
(cut)

⊢ Γ,∆

we associate the typed proof

structure S obtained from S1+S2 by removing the •-nodes with premises
a1 labelled A and a2 labelled A⊥, and by introducing a new cut-node with
premises a1 and a2.

A

S1
A⊥

S2

cut

Γ ∆

• If π1 is translated into S1 = ps(π1) and π2 is translated into S2 = ps(π2),

then with the proof

π1

⊢ A,Γ

π2

⊢ B,∆
(⊗)

⊢ A⊗B,Γ,∆

we associate the typed proof

structure S obtained from S1+S2 by removing the •-nodes with premises
a1 labelled A and a2 labelled B, and by introducing a new ⊗-node with
premises a1 and a2 and with conclusion a new arrow labelled A⊗B which
is itself the premise of a new •-node.

A

S1
B

S2

⊗

A⊗B Γ ∆

• If π1 is translated into S1 = ps(π1), then with the proof

π1

⊢ A,B,Γ
(`)

⊢ A`B,Γ
we associate the typed proof structure S obtained from S1 by removing the
•-nodes with premises a1 labelled A and a2 labelled B, and by introducing
a new `-node with premises a1 and a2 and with conclusion a new arrow
labelled A`B which is itself the premise of a new •-node.
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A B

S1

`
A`B Γ

• If π1 is translated into S1 = ps(π1), then with the proof

π1

⊢ Γ, A,B,∆
(ex )

⊢ Γ, B,A,∆
we associate the typed proof structure S obtained from S1 by exchanging
the •-nodes with premises labelled A and B in the conclusion sequence
(thus only the interface is modified).

A B

S1

ABΓ ∆

Exercise 2.2.7. Compute ps(π) with

π :=

(ax )
⊢ A⊥, A

(ax )
⊢ A,A⊥

(⊗)
⊢ A⊥ ⊗A,A,A⊥

(ax )
⊢ A,A⊥

(`)
⊢ A`A⊥

(cut)
⊢ A,A⊥

(ex )
⊢ A⊥, A

and check that it is isomorphic to

A⊥ A

⊗

ax

ax

A⊥ A

A A⊥

ax

`
cut

.
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Exercise 2.2.8. Compute ps(π) and ps(π′) with

π :=

π1

⊢ A,C,D,Γ1

π2

⊢ B,E,Γ2
(⊗)

⊢ A⊗B,C,D,Γ1, E,Γ2
(ex )

⊢ C,D,A⊗B,Γ1, E,Γ2
(`)

⊢ C `D,A⊗B,Γ1, E,Γ2
(ex )

⊢ E,C `D,A⊗B,Γ1,Γ2

π3

⊢ E⊥,Γ3
(cut)

⊢ C `D,A⊗B,Γ1,Γ2,Γ3

and

π′ :=

π1

⊢ A,C,D,Γ1
(ex )

⊢ C,D,A,Γ1
(`)

⊢ C `D,A,Γ1
(ex )

⊢ A,C `D,Γ1

π2

⊢ B,E,Γ2
(⊗)

⊢ A⊗B,C `D,Γ1, E,Γ2
(ex )

⊢ E,C `D,A⊗B,Γ1,Γ2

π3

⊢ E⊥,Γ3
(cut)

⊢ C `D,A⊗B,Γ1,Γ2,Γ3

where π1, π2 and π3 are proof trees with the appropriate conclusions. Check
that ps(π) and ps(π′) are isomorphic and find a third proof with the same
translation.

2.2.2 Proof nets
Not all typed proof structures represent (or are the translation of) proofs in the
sequent calculus MLLv.
Exercise 2.2.9. Prove that there is no proof tree whose translation yields one of
the following three proof structures:

A A⊥

ax

cut

A A⊥

ax

⊗

A⊗A⊥

A A⊥

ax

A A⊥

ax

`
A⊥ `A

.

Determining whether a proof structure is indeed the translation of a proof
tree is in general not so obvious.
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Example 2.2.10. Here are a two other examples of typed proof structures which
do not correspond to any proof of MLLv (this will be proved in Exercise 2.2.14
below):

A A⊥

ax

B B⊥

ax

C C⊥

ax

`
A⊥ `B

`
B⊥ ` C

⊗

(A⊥ `B)⊗ (B⊥ ` C)

C A
B B⊥

ax
C⊥

`
A`B

`
B⊥ ` C⊥

E⊥
D⊥ D

ax
A⊥ E

`
E⊥ `D⊥

`
D `A⊥

ax ax

ax

⊗

C ⊗ (A`B)

⊗

(B⊥ ` C⊥)⊗ (E⊥ `D⊥)

⊗

(D `A⊥)⊗ E

.

This leads to the study of correctness criteria to try to delineate a sub-set
of “valid” proof structures which belong to the image of the translation ps.

2.2.2.1 Switching graphs

Given a proof structure S, let N`(S) be the set of its `-nodes. A switching
of S is a function φ defined on N`(S) and such that, for each `-node P , φ(P )
is one of its premises. The switching graph Sφ associated with φ is the
graph obtained from G(S) by keeping only the premise φ(P ) for each `-node
P : formally, we modify the target of the other premise into a new node P •, as
in Fig. 2.2 — where the new node P • is depicted as a •-node.

More explicitly:

• the nodes of Sφ are those of S, plus one node P • for each P ∈ N`(S);

• the set of arrows of Sφ is the same as that of S;

• the source function s in Sφ is the same as in S;

• the target function t in Sφ is the same as in S, except that each premise
a of a `-node P with a ̸= φ(P ) is now mapped to P •.
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nL nR

`

n0

nL nR

`

n0

nL nR

`

n0

left right

Figure 2.2: Switching a `-node.

Observe that Sφ is not the graph of a proof structure in general, because its
`-nodes have only one premise. Moreover, no typing information is involved
to define switching graphs, which are in fact defined solely from the underly-
ing unordered proof structure. A proof structure with p `-nodes induces 2p

switchings.

Definition 2.2.11 (Proof nets). A switching cycle in a proof structure is a
cycle in some of its switching graphs. A proof structure is acyclic if it has no
switching cycle, i.e. if its switching graphs do not contain any cycle. An acyclic
proof structure is called a proof net.

Note that the empty proof structure has exactly one switching, which is the
empty function, and the associated switching graph is the empty graph, which is
acyclic: the empty proof structure is thus a proof net. Moreover, a sum of proof
structures S1 + S2 is a proof net iff each Si is a proof net: indeed, a switching
graph of S1 + S2 is the sum of a switching graph of S1 and a switching graph
of S2.

Note that every descent path can be considered as a path inside some switch-
ing graph:

Lemma 2.2.12. For every descent path γ of S, there exists a switching φ such
that γ is also a directed path of Sφ.

Proof. Since each descent path is a simple path, we can chose φ such that each
premise of a `-node crossed by γ is in the image of φ. Then each edge of γ has
the same source and target in Sφ as in G(S). Since γ is a directed path in G(S),
it is also a directed path in Sφ.
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In other words, every descent path is a switching path: the latter notion will
be formally defined and thoroughly studied in Section 2.2.4.

Lemma 2.2.13 (Connected Components). All the switching graphs of a proof
net have the same number of connected components.

Proof. Let S be a proof net. If n is the number of nodes of S, p its number of
` nodes and a its number of arrows, any switching graph of S is acyclic and
has n + p nodes and a arrows. By Lemma A.2.3, any such acyclic graph has
n+ p− a connected components.

Given a proof net R, we write #cc(R) for the number of connected compo-
nents of its switching graphs.

A proof net R is connected if all its switching graphs have exactly one con-
nected component: #cc(R) = 1. Thanks to the previous lemma, this is equiva-
lent to checking that one switching graph is connected.
Exercise 2.2.14. Inspect all possible switchings of the proof structures of Exer-
cise 2.2.9 and Example 2.2.10. Which of these structures are proof nets? Show
that none of them is a connected proof net.

Notice that since the unique switching graph of the empty proof structure E
has no connected components, E is a proof net which is not connected. Similarly,
since E is the neutral element of the sum, a sum S1 + S2 of structures is a
connected proof net iff one is a connected proof net and the other is empty.

2.2.2.2 Soundness

We have thus introduced two correctness criteria: first the acyclicity of
switching graphs, characterizing proof nets; then the stronger requirement that
switching graphs are moreover connected, yielding connected proof nets. In the
following, we will establish that the translations of proof trees are exactly the
typed connected proof nets (Corollary 2.2.41). The weaker notion of proof net
is nonetheless relevant: we will see that acyclicity is sufficient to expose inter-
esting structures and properties when we study the sequentialization process in
Section 2.2.4; and beyond a mere technical artifact, we will see that dropping
the connectedness requirement yields a major simplification of the theory when
we consider units (Section 2.3) or exponential modalities (Section 2.4).

We first establish that our correctness criteria are sound: the translation of
a proof tree is correct.

Proposition 2.2.15 (Soundness of Correctness). The translation ps(π) of a
sequent calculus proof π of MLLv is a typed connected proof net.

Proof. By definition, the translation ps(π) of a sequent calculus proof π of MLLv
is a typed proof structure.

We prove that ps(π) is a proof net by induction on the structure of the MLLv
proof π. Let S be the proof structure associated with π, and we also need to
consider two sub-proofs π1 and π2 of π with associated proof structures S1 and
S2.
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• The proof structure below has a unique switching graph which has no
cycle.

ax

• If π is obtained from π1 and π2 with a (cut) rule, every switching graph
Sφ of S is obtained by connecting through a cut-node a switching graph
Sφ1 of S1 and a switching graph Sφ2 of S2.

Sφ1 Sφ2

cut

We can deduce that no switching graph of S contains a cycle.

• If π is obtained from π1 and π2 with a (⊗) rule, any switching graph Sφ
of S is obtained by connecting through a ⊗-node a switching graph Sφ1 of
S1 and a switching graph Sφ1 of S2.

Sφ1 Sφ2

⊗

We can deduce that no switching graph of S contains a cycle.

• If π is obtained from π1 with a (`) rule, any switching graph Sφ of S is
obtained by putting a `-node connected to a •-node instead of a •-node
in some switching graph Sφ1 of S1.

Sφ1

`
or

Sφ1

`

We can deduce that no switching graph of S contains a cycle.

• If π is obtained from π1 with an (ex ) rule, the underlying unordered proof
structure is the same.

It remains only to prove that all the switching graphs of ps(π) are connected.
One can easily check, by induction on π, that n+p−a = 1, where n (resp. p) is
the number of nodes (resp. ` nodes) of ps(π), and a is the number of arrows of



2.2. MULTIPLICATIVE PROOF NETS 69

ps(π). Similarly to the proof of Lemma 2.2.13, since n+p is the number of nodes
of any switching graph of ps(π) and a is the number of its arrows, this entails
that every switching graph of ps(π) has exactly one connected component.

We will establish the converse of this property in Section 2.2.4: each typed
connected proof net is the translation of a proof. Before that, however, we first
establish that proof nets enjoy a cut elimination procedure.

2.2.3 Cut Elimination

If we propose proof nets as an alternative to sequent calculus to study proofs in
(multiplicative) linear logic, we need to be able to deal with cut elimination in
this new syntax without referring to the sequent calculus.

Cut elimination in proof nets is defined as a graph rewriting procedure, which
acts through local transformations of the proof net.

The cut elimination steps are naturally defined in the general case of proof
structures (Section 2.2.3.1), they preserve correctness (Section 2.2.3.2) and enjoy
good computational properties (Section 2.2.3.3).

2.2.3.1 Reductions Steps

We consider two reduction steps:

ax

cut

a7−→

⊗ `
cut

m7−→ cut
cut

specifying local transformations of proof structures.
Applying a reduction step in a proof structure S amounts to:

• selecting a set of nodes and arrows in G(S), matching the shape of the
left hand side of a reduction rule, and obeying the labelling constraint on
nodes (the redex);

• replacing these nodes and arrows with the right hand side (its reduct);

• inferring the rest of the structure (the labelling of nodes, the order of
premises, the interface of the structure) from that of S.
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Example 2.2.16. Consider the proof net R:

⊗

ax

ax

ax

`
cut

containing a single m7−→ redex. Reducing this redex, we obtain

ax

ax

ax

cut
cut

which contains four a7−→ redexes: one for each premise of a cut-node that is also
a conclusion of an ax -node. Reducing the redex involving the right premise of
the rightmost cut-node, we obtain

ax

ax

cut

which again reduces to
ax

by firing the redex associated with the left premise of the cut.
As intuitive as it might seem, the definition of cut elimination does require

some care, as shown by the next two examples.
Example 2.2.17. Consider the proof structure:

Sloop =
ax

cut

.

This seems to contain a redex, but it is not clear what the result of the reduction
should be.
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ax n1

cutn2

a7−→
n1

n2

n1 n2

⊗

n3 n4

`
cut

m7−→

n1 n2 n3 n4

cut
cut

Figure 2.3: Cut elimination steps in multiplicative proof structures

Example 2.2.18. Eliminating the only cut in the proof structure Sfix

ax ax

⊗

cut

yields
ax

⊗

which is not a proof structure, because the underlying directed graph is not
acyclic.

To give a precise definition of cut elimination, we need to make explicit the
way a redex is matched in a proof structure. Note that some sources and targets
of arrows in the depiction of reduction steps were left unspecified: these form
the interface of the reduction step, and the drawing implicitly designates a one-
to-one correspondence between the interface nodes of the left hand side and
those of the right hand side. In Fig. 2.3, we have reproduced the two reduction
rules, giving names to the interface nodes, to make this correspondence explicit.
We will call active nodes the nodes that are actually depicted in a reduction
step. By contrast with active nodes, the interface nodes are left unchanged by
the reduction step, and are not part of the redex nor of the reduct: they rather
serve as placeholders for the non-active targets and sources of the arrows in the
redex or the reduct.

In particular, to make sense of the above procedure describing the application
of a reduction step, we implicitly require that the interface nodes of a redex are
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distinct from the active nodes: with this requirement, the proof structure Sloop
of Example 2.2.17 has no redex. Note that, for the multiplicative reduction
step m7−→, this is automatically satisfied, because the interface nodes occur as
premises of active nodes only.

Finally, to ensure that eliminating a cut in a proof structure does yield a
proof structure, we will restrict the application of the cut elimination rule a7−→.
More precisely, we will rule out situations such as that of Example 2.2.18, by
forbidding the application of rule a7−→ inside a proof structure S when there is
a descent path from n2 to n1 in G(S) (where n1 and n2 are the interface nodes,
following the notations of Fig. 2.3). With this restriction, it is clear that the
application of any reduction step in a proof structure preserves the directed
acyclicity of the underlying graph, and the rest of the constraints ensure that
the result is indeed a proof structure.

On the other hand, we do not make the assumption that the interface nodes
n1 to n4 in the m7−→ step of Fig. 2.3 are pairwise distinct: even in the translation
of a proof tree, the premises of a `-node might very well be conclusions of the
same ax -node, and we must be able to eliminate a cut involving such a `-node.
This was in particular the case in the first reduction step of Example 2.2.16.

We are now ready to state the definition of cut elimination in proof structures
precisely:

Definition 2.2.19. The reduction of multiplicative proof structures am−→
is the union of:

• the multiplicative reduction m−→ induced on proof structures by the
application of the reduction step m7−→ of Fig. 2.3;

• the axiom reduction a−→ induced on proof structures by the application
of reduction step a7−→ of Fig. 2.3, under the condition that there is no
descent path from the n2 to n1.2

A redex in a proof structure S is a set of nodes and arrows in G(S) matching
the left hand side of a rule in Fig. 2.3, such that the corresponding reduction
step can be applied.

Note that any pattern matching the left hand side of m7−→ in a proof structure
S is always a redex, while in the case of a7−→ it is considered a redex in S only
if there is no descent path from n2 to n1 in G(S). Depending on the constraints
we put on proof structures, we thus obtain the following situations:

1. In the general case, we can find proof structures, (such as those of Exam-
ples 2.2.17 and 2.2.18) in which a cut-node might have a premise which is
a conclusion of an ax -node, but does not belong to any redex. The next
point shows that such proof structures cannot be proof nets.

2Recall that, as explained above, we always assume that interface nodes are distinct from
active nodes: here, n1 is not the depicted ax -node, and n2 is not the depicted cut-node.
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2. If R is a proof net, then each cut-node having as premise a conclusion
of an ax -node belongs to a redex involving those two nodes. Indeed,
every descent path belongs to a switching graph (Lemma 2.2.12): with
the notations of Fig. 2.3, if there were a descent path from n2 to n1 in
G(R), we would obtain a cycle in the associated switching graph via three
edges of the redex.

3. If R is a proof net that cannot be typed, one might still have a cut which
does not belong to any redex (e.g. a cut between two ⊗-nodes).

4. If R is a typeable proof net, then every cut belongs to a redex. Indeed,
given a cut-node c: either one premise node of c is an ax -node, and Item 2
ensures this forms a redex; or both premise nodes of c are ⊗- or `-nodes.
In the latter case, due to the typing constraints, one must be a ⊗-node
and the other a `-node, which yields a redex.

Moreover notice that applying reduction steps inside a typed structure pre-
serves typing. Since both typing and cut elimination are defined locally, it
suffices to observe how a typing is transformed by a reduction step:

A
A⊥ A

ax

cut

a7−→ A

A B

⊗
A⊗B

A⊥ B⊥

`
A⊥ `B⊥

cut

m7−→
A B A⊥ B⊥

cut
cut

which ensures that the typing constraints imposed at the level of interface nodes
are the same in the redex and in the reduct — the rest of the typing is left
unchanged.

As a consequence, normal forms for the reduction of typed proof nets are
exactly cut-free typed proof nets.
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Exercise 2.2.20. Consider the proof net

R :=

ax ax

`
⊗

` ⊗

ax

ax

`
cut

.

Find a typing ofR and check that the conclusion sequent is of the form ⊢ A⊥`A.
This typing being fixed, find a sequence of reduction steps from R to a cut-free
typed net. Check that the result is isomorphic to

Rid :=

A⊥ A

ax

`

A⊥ `A

.

It is in fact obvious that all possible reduction paths from the proof net R
of Example 2.2.16 yield the same cut-free result (up to isomorphism of proof
structures). We will later establish (see Section 2.2.3.3) that this is a general
fact: cut elimination is convergent. Before that, we show that proof nets are
stable under cut elimination.

2.2.3.2 Preservation of Correctness

Lemma 2.2.21 (Preservation of Acyclicity). If R is a proof net and R am−→ R′

then R′ is a proof net.

Proof. We consider the two steps:

• Through an a step, a switching graph of the reduct can be turned into a
switching graph of the redex by replacing an edge crossing the new arrow
with a path of length 3 going through the ax node and through the cut
node. Then one of these two switching graphs is acyclic if and only if the
other one is.

• Through an m step, a switching graph Sφ of the reduct gives rise to two
switching graphs Sφ1 and Sφ2 in the redex depending on the choice of a
premise a1 or a2 of the ` node which disappears through the reduction.
Assume there is a cycle in Sφ. It must go through at least one of the cuts
otherwise it is a cycle in Sφ1 and Sφ2 .
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If it goes only through the cut with premise ai in the reduct, the premises
of this cut are connected in Sφ (without using the cut) and then we have
a cycle in Sφi , hence a contradiction.

If it uses both cuts: either the premises of the ⊗-node are connected in
Sφ (without using those cuts) and we have a cycle in both Sφ1 and Sφ2 ;
or a1 is connected to a premise of the ⊗-node, and we have a cycle in Sφ1 .

Remember that, thanks to Lemma 2.2.13, all the switching graphs of a proof
net have the same number of connected components.

Lemma 2.2.22 (Preservation of Connected Components). If R is a proof net
and R am−→ R′ then the number of connected components of the switching graphs
of R′ is the same as for the switching graphs of R.

Proof. The switching graphs are acyclic in both R and R′ (see Lemma 2.2.21).
We can thus use Lemma A.2.3. We consider the two reduction steps. In each
case, in every switching graph we loose two nodes and two arrows thus the
number of connected components is not modified.

In particular a reduct of a connected proof net is a connected proof net.

2.2.3.3 Normalization

If we consider cut elimination as a computational process on proof nets, the two
key properties we want to prove about it are termination and uniqueness of the
result. If the existence of a terminating reduction strategy (weak normaliza-
tion) allowing to reach a cut-free proof net from any typed proof net is enough
from the point of view of logical consistency, it is more satisfactory from a com-
putational point of view to prove that any reduction will eventually terminate
(strong normalization). It turns out that, in the multiplicative case, this does
not require any typing condition nor any correctness condition.

Lemma 2.2.23 (Sub-Confluence). The reduction of proof structures am−→ is sub-
confluent3: more precisely, if R am−→ R1 and R am−→ R2 then R1 = R2 or there
exists R′ such that R1

am−→ R′ and R2
am−→ R′.

Proof. There are two kinds of critical pairs:

3The vocabulary and main properties of reduction systems are recalled in Appendix B.
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• a/a (shared cut)

n1

ax

n2

ax

cut

n1 n2

ax

aa

• a/a (shared ax )

n1

cut

n2

cut

ax

n1 n2

cut

aa

In all the other situations, two different reductions from a given proof net com-
mute:

.

. .

.

(1) (2)

(2) (1)

since they cannot overlap.

Proposition 2.2.24 (Convergence). The reduction of proof structures is con-
vergent.

Proof. Confluence is obtained by Proposition B.2.1 and Lemma 2.2.23. More-
over, the number of nodes is reduced in each reduction step.

Since each cut of a typed proof net is involved in at least one redex, we
obtain:

Corollary 2.2.25 (Normalization of typed proof nets). The reduction of typed
proof nets is convergent, and the unique normal form of a typed proof net is
cut-free.
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2.2.4 Sequentialization

We want to associate an MLLv proof with each typed connected multiplicative
proof net. This is called the sequentialization process, for it requires to turn the
graph structure of proof nets into the more sequential structure of proofs trees.
A proof tree π such that ps(π) = R is called a sequentialization of R.

2.2.4.1 Overview

There are various approaches to sequentialization. Here we chose to follow what
seems like the most natural strategy: we focus on terminal nodes and investigate
the conditions under which the translation process described in Section 2.2.1.3
can be reversed.

More precisely, fixing a typed connected proof net R, we can consider the
following cases:

• If R has a terminal ax -node, then it must be reduced to this node and its
conclusions (otherwise its switching graphs have more than one connected
component), and it is thus the translation of an (ax ) rule.

• If R has a terminal `-node, then we can assume (up to reordering the
conclusions, which amounts to apply (ex ) rules at the bottom of the se-
quentialization under construction) that R has the shape obtained in the
translation of a (`) rule, namely:

R =

A B

S

`
A`B Γ

.

The structure S obtained from R by removing the `-node (also removing
its conclusion, and adding two new •-nodes as conclusions of the arrows
typed A and B) is necessarily a typed connected proof net: by sequential-
izing S inductively, we obtain a proof tree π1 with conclusion ⊢ A,B,Γ,
and we construct a sequentialization of R by applying a (`) rule to π1.

• It remains only to consider the case where all the terminal nodes of R are
⊗-nodes or cut-nodes. For the purpose of sequentialization, we can in fact
assume thatR is cut-free: indeed, we can replace a cut-node with premises
of type A and A⊥ with a ⊗-node with conclusion A⊗A⊥, without changing
the required properties of switching graphs (we make this argument formal
below: see Lemma 2.2.27) nor the typing constraints. We are thus left
with terminal ⊗-nodes only. Again, if we fix a terminal ⊗-node, up to
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reordering the conclusions, we can assume R has the shape:

R =

A B

S

⊗

A⊗B Γ

but note that this is not the shape of a translation of a (⊗) rule!

A crucial step in the sequentialization process is thus to find a terminal ⊗-
node T that is moreover splitting: it is not part of a cycle in G(R). Indeed,
assuming the ⊗-node T in the previous depiction of R is splitting, since there
is no path between its premises other than through T itself, we can split S into
S1 with conclusion ⊢ A,Γ1 and S2 with conclusion ⊢ B,Γ2 (further assuming,
up to an additional reordering of conclusions, that Γ = Γ1,Γ2) to obtain:

R =

A

S1
B

S2

⊗

A⊗B Γ1 Γ2

.

Then we can inductively sequentialize S1 and S2 separately, and apply a (⊗)
rule to obtain a sequentialization of R.

Our objective is thus to show that, in a cut-free connected proof net which
is not reduced to an ax -node, there must exist a terminal `-node, or a splitting
terminal ⊗-node: this is the crux of the sequentialization process.

In order to help the reuse of some of the results in later sections, we consider
a simple generalization of proof structures where ax -nodes are replaced with
hyp-nodes4:

• each node labelled hyp has an arbitrary number of conclusions (at least
one) and no premise;

• in a typing for a proof structure with hyp-nodes, we require that for each
hyp-node with conclusions A1, . . . , An (in arbitrary order), the sequent
⊢ A1, . . . , An is derivable in MLLv.

The original ax -nodes are clearly a particular case of these new hyp-nodes since
⊢ A,A⊥ is provable for any A in MLLv by means of an (ax ) rule.

Moreover, typing plays no rôle in finding an appropriate terminal node, as we
only rely on geometrical properties of switching graphs. To reduce the “noise”
associated with the management of types, we introduce an untyped version of
sequentiality in the next section. Again, this will also help us to reuse some
results in later sections, where more general forms of typing are considered.

4The notions of switching graph, proof net, connected proof net straightforwardly generalize
to this framework.
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2.2.4.2 Connected sequential structures

We say that an unordered proof structure S is connected sequential if one of
the following holds, assuming inductively that S1 and S2 are connected sequen-
tial unordered proof structures:

(S1) S is reduced to an hyp-node with its conclusion arrows and respective
•-nodes;

hyp

(S2) S is obtained from S1 + S2 by removing one •-node in each of S1 and S2,
with premises a1 in S1 and a2 in S2 respectively, and by introducing a
new cut-node with premises a1 and a2;

S1 S2

cut

(S3) S is obtained from S1 + S2 by removing one •-node in each of S1 and S2,
with premises a1 in S1 and a2 in S2, and by introducing a new terminal
⊗-node with premises a1 and a2, together with its conclusion arrow and
node;

S1 S2
⊗

(S4) S is obtained from S1 by removing two •-nodes in S1, with premises a1
and a2, and by introducing a new terminal `-node with premises a1 and
a2 together with its conclusion arrow and node.

S1
`

And we say that a proof structure S is connected sequential if the underlying
unordered proof structure is.

Note that we took advantage of the irrelevance of the ordering of conclusions
to illustrate the cases (S2) to (S4) without crossing edges.

Lemma 2.2.26 (Untyped correctness). Any connected sequential proof struc-
ture is a connected proof net.
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Proof. By induction on the definition of connected sequential proof structures:
cases (S1) to (S4) are treated exactly as in the proof of Proposition 2.2.15.

In the following, we will establish the converse: every connected proof net
is connected sequential. We will then deduce the sequentialization theorem
(Theorem 2.2.40) from the easy observation that a typed proof structure is the
translation of a proof as soon as it is connected sequential.

To establish the correspondence between connected sequential structures and
connected proof nets, it will be sufficient to consider cut-free structures. Indeed,
for any proof structure S, we write S[⊗/cut ] for the proof structure obtained by
replacing each cut-node with a ⊗-node — with conclusion pointing to a fresh
•-node. We obtain:

Lemma 2.2.27. For any proof structure S:

• S is connected sequential iff S[⊗/cut ] is;

• S is a connected proof net iff S[⊗/cut ] is.

Proof. The first item is direct by induction on the definition of connected se-
quential structures. For the second item, it is sufficient to observe that:

• the `-nodes of S[⊗/cut ] are those of S;

• given a switching φ of S (equivalently, of S[⊗/cut ]), any path of Sφ is
also a path of S[⊗/cut ]φ, with the same endpoints, and any simple path
of S[⊗/cut ]φ with endpoints in Sφ is also a path of Sφ.

2.2.4.3 Switching paths and bridges

Given a proof structure S, recall that any switching graph Sφ of S has an
additional node P • for each `-node P , and the same edges as S, except that
the target of the premise different from φ(P ) of each `-node P is changed to
P •.

We call switching path of S any path γ in G(S) that never crosses both
premises of a `-node: equivalently, γ is a switching path if there exists a switch-
ing φ such that, for each premise a of `-node P , φ(P ) = a as soon as γ crosses
a. In particular γ is also a path in the switching graph Sφ. Conversely, a path
in Sφ is a switching path of S, as soon as none of the new nodes P • occur in γ.
In particular a switching cycle is the same thing as a cyclic switching path:

Lemma 2.2.28. A cycle in a proof structure is a switching cycle iff it is a
switching path.

Proof. A switching cycle in a structure S is a cycle in some switching graph
φS : since it is a simple path, it cannot cross the premise of any node P • in
φS , hence it is also a path in G(S), which crosses at most one premise of each
`-node.
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Conversely, given a cyclic switching path γ, we have already seen that γ is
also a path in some φS .

Given a path γ, a bridge of γ is any subpath a+1 a
−
2 of γ, such that a1 and

a2 are both premises of some `-node P , which we call the pier of the bridge.
Of course, a switching path has no bridge, but the converse does not hold in
general.

Example 2.2.29. In the structure

ax

ax ax

``
⊗

the only ⊗-node is the source of exactly one cycle, up to the choice of an ori-
entation. This cycle has exactly one bridge, whose pier is the terminal `-node.
By contrast, the cycle whose source is the terminal `-node has no bridge — al-
though it uses the same edges as the previous one, up to a circular permutation.

We generalize the situation observed in the previous example as follows: a
proper cycle of a `-node P is any bridge-free cycle of the shape a−1 γ

′a+2 where
a1 and a2 are both premises of P .

Lemma 2.2.30 (Bridge-free cycles). Any bridge-free cycle in a proof structure
is either a switching cycle, or a proper cycle of some `-node.

Proof. Assume γ is a bridge-free cycle in a proof net, that is not a switching
cycle: γ crosses both premises of some `-node. Given such a `-node P , write
a1 and a2 for its premises, and then write γ = γ1e1γ

′e2γ2, with e1 = a+1 or a−1
and e2 = a+2 or a−2 . We can moreover chose P so that γ′ is of minimal length:
γ′ is then a switching path.

Now observe that, in each of the following cases, we obtain a contradiction:

• if e1 = a+1 and e2 = a−2 , either γ′ crosses the conclusion of P twice (but γ
is simple), or it is empty and we obtain a bridge of γ (but γ is bridge-free);

• if e1 = a+1 and e2 = a+2 , then the first edge of γ′ must be a+0 (because γ′
is not closed, it cannot be empty, and must start with an outgoing edge of
t(a1) = P , and moreover γ is simple so γ′ cannot cross a1 nor a2); hence
γ2 is empty (s(γ2) = P but γ is simple so γ2 does not cross any of the
ai’s) and then γ1 must also be empty (s(γ1) = P but, again, γ is simple),
hence s(γ) = s(a1) ̸= P = t(γ) (but γ is closed);

• if e1 = a−1 and e2 = a−2 , we reason symmetrically to the previous case.
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Hence we must have: γ = γ1a
−
1 γ

′a+2 γ2. Then t(γ1) = P = s(γ2) so one of γ1 and
γ2 must be empty (again, because γ is simple and already crosses a1 and a2).
In particular, P = s(γ): this forces both γ1 and γ2 to be closed simple paths of
source P and since they cannot cross a1 nor a2, both must be empty.

We say a path γ is weak if its first edge is a− with a a premise of a `-node.
We say γ is strong if it is neither empty nor weak. We say γ is coweak (resp.
costrong) if γ is weak (resp. strong). Notice that a proper cycle is both weak
and coweak. Lemma 2.2.30 can be reformulated equivalently as follows:

Corollary 2.2.31 (Strong bridge-free cycles). A proof structure is a proof net
iff it has no strong bridge-free cycle.

Proof. We show that in any proof structure, a cycle is a switching path iff it is
bridge-free, and strong or costrong.

Given a switching cycle γ, we have already observed that γ is bridge-free,
hence so is γ. Moreover, one of γ or γ must be strong, as otherwise γ is both
weak and coweak, i.e. the source of γ is a `-node P and the first edge and last
edge of γ cross the premises of P , which contradicts the fact that γ is switching.

Conversely, a bridge-free cycle that is strong or costrong cannot be a proper
cycle, hence it is a switching cycle by Lemma 2.2.30.

Moreover, a direct application of the definitions yields:

Lemma 2.2.32 (Concatenation of Strong and Bridge-Free Paths). Let γ and
γ′ be two composable paths:

• if γ is strong (resp. weak) then so is γγ′;

• if γ′ is costrong (resp. coweak) then so is γγ′;

• if γ is costrong or γ′ is strong, and both γ and γ′ are bridge-free, then γγ′
is bridge-free.

In particular, if γ and γ′ are both strong and bridge-free, then so is then γγ′.

Definition 2.2.33 (Two relations on arrows). Let a and b be arrows, and n a
node, in a proof structure. We write γ : a ↷ n whenever γ is a simple, bridge-
free and strong path from t(a) to n, not starting with the edge a−. We then
write γ : a↷ b whenever, in addition, the last edge of γ is b+, so that n = t(b).
We simply write a ↷ n (resp. a ↷ b) whenever such a path γ : a ↷ n (resp.
γ : a↷ b) exists.

We moreover write γ : a ≺ b whenever γ : a ↷ b, and there is no node n of
γ such that b ↷ n. Again, we may simply write a ≺ b whenever γ : a ≺ b for
some path γ.

Lemma 2.2.34 (Composing ≺ and ↷). Whenever γ : a ≺ b and δ : b↷ n, we
have γδ : a↷ n. And if moreover δ : b↷ c, then γδ : a↷ c.
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Proof. First observe that γ and δ are disjoint: otherwise we contradict γ : a ≺ b
by considering any non-empty prefix δ′ of δ (which is automatically simple,
bridge-free and strong) such that t(δ′) occurs in γ. It follows that γδ is also
simple. It is moreover bridge-free and strong by Lemma 2.2.32, and its first
edge is that of γ, which is not a−: we thus have γδ : a↷ n.

If moreover δ : b↷ c, then the last edge of γδ is that of δ, which is c+, and
we have γδ : a↷ b.

Lemma 2.2.35 (A strict partial order on arrows). In any proof net R, the
relation ≺ is a strict partial order relation on the arrows of R.

Proof. We first prove that ↷ is irreflexive: assuming γ : a ↷ a, γ would be a
strong and bridge-free cycle, which contradicts Corollary 2.2.31. It follows that
≺ is irreflexive too.

For transitivity, assume γ : a ≺ b and δ : b ≺ c. By the previous Lemma,
we also have γδ : a ↷ c. It remains only to show that there is no node n of
γδ such that c ↷ n. Towards a contradiction, assume we have ρ : c ↷ n with
n occurring in γδ. If n occurs in δ we contradict δ : b ≺ c directly. Hence n
occurs in γ, and we contradict γ : a ≺ b because δρ : b ↷ n by the previous
Lemma.

Lemma 2.2.36 (Descent paths are ≺-monotone). If a and b are respectively a
premise and a conclusion of a node n in a proof net, then a ≺ b. More generally,
if a+γb+ is a descent path in a proof net, then a ≺ b.
Proof. Since ≺ is transitive, the second statement follows directly from the first
one.

Fix a a premise of n and b one of its conclusions. The descent path reduced
to b+ is obviously strong, simple and bridge-free, hence b+ : a↷ b. Now assume
towards a contradiction that we have a path γ : b ↷ p with p occurring in b+.
Since the first edge of γ does not cross b we can assume w.l.o.g. that γ does not
cross b (otherwise we pick a suitable non-empty prefix). Then there are only
two cases:

• p = t(b), hence γ is a strong, bridge-free cycle;

• p = n, and then, by Lemma 2.2.32, b+γ is again a strong, bridge-free cycle;

and both cases contradict Corollary 2.2.31.

Corollary 2.2.37 (Maximal arrows are terminal). Let a be an internal arrow of
a proof net, that is maximal for ≺ among internal arrows. Then a is terminal.

Proof. Assume n := t(a) is not terminal. Necessarily, n has an internal conclu-
sion arrow, that we write b, and Lemma 2.2.36 yields a ≺ b.

Since the set of arrows of a proof net is finite, it follows that a net with
at least one internal arrow has a ≺-maximal one (among internal arrows), and
we have just seen that this arrow is terminal. We establish that the target of
such an arrow is moreover splitting: if it is a `-node, this is direct because any
terminal `-node is splitting; we treat the case of a ⊗-node in the next section.
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2.2.4.4 Bungee jumping and splitting ⊗-nodes

Given some node n in a proof structure, we write B(n) for the set of strong or
costrong cycles with source n, whose number of bridges is minimal. Note that
γ ∈ B(n) iff γ ∈ B(n).

Lemma 2.2.38 (Bungee Jumping). Let n be a node in a proof net, let ω ∈ B(n),
and let a be the conclusion of κ, the pier of a bridge of ω. If γ is a simple,
bridge-free and strong path with first edge a+, then t(γ) does not occur in ω.

Proof. Write p := t(γ) and assume that p occurs in ω. It is sufficient to show
the existence of a strong bridge-free cycle to contradict Corollary 2.2.31.

We can assume κ ̸= p: otherwise we already have such a cycle. Note that ω
cannot cross the first edge of γ, which is the conclusion of κ, because ω is simple
and already crosses both premises of κ at the bridge. In particular, κ ̸= n. We
can thus assume that γ is disjoint from ω, up to taking a (non empty) prefix.
Noting that ω satisfies the hypotheses iff ω does, we can reverse ω if necessary
to ensure that: in case p = n, then ω is strong; and otherwise the occurrence of
p in ω is after the pier κ. We can thus write ω = ω1δω2, so that s(δ) = κ and
t(δ) = p.

Now consider the closed path π = ω1γω2: it is not empty since κ ̸= p; it is
moreover simple, as we have already ensured that ω and γ are disjoint. Hence π
is a cycle, which is moreover strong or costrong: if p = n, we have made sure ω1

is strong; and otherwise, ω1 is a non empty prefix of ω and ω2 is a non empty
suffix, hence ω1 is strong or ω2 is costrong. By the definition of B(n), it follows
that π has at least as many bridges as ω. Since γ is bridge-free, and π cannot
have a bridge at κ (because γ is strong), there must be no bridge in δ, and
there is exactly one newly formed bridge in π, with pier p: hence γ is coweak
and ω2 is weak, which leaves only the conclusion of p for the last edge of δ. By
Lemma 2.2.32, γδ is a strong bridge-free cycle.

Lemma 2.2.39 (Finding a splitting⊗-node). If a is an internal arrow in a proof
net, that is maximal for ≺ among internal arrows, and moreover the (necessarily
terminal) node n := t(a) is a ⊗-node, then the latter is splitting.

Proof. Write a1 and a2 for the premises of n, so that a = a2. Assume, towards
a contradiction, that n is not splitting: necessarily, the set B(n) is not empty,
and contains a cycle ω whose first edge is a−1 . Consider the first bridge b+1 b

−
2 of

ω: write κ for its pier, with premises b1 and b2. Then write γ for the prefix of
ω with last edge b+1 : this is strong (its first edge is a−1 ), simple (it is a subpath
of a cycle), and bridge-free (by construction). We obtain γ : a↷ b1.

Moreover, there is no path δ : b1 ↷ p with p occurring in γ (hence in ω).
Indeed, the first edge of such a strong path δ cannot be b−1 nor b−2 , so it must
be b+0 with b0 the conclusion of κ: this would contradict the Bungee Jumping
Lemma. We thus obtain a ≺ b1, contradicting the maximality of a since b1 is
internal.
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2.2.4.5 Sequentialization of connected proof nets

We are now ready to establish the announced sequentialization result.

Theorem 2.2.40 (Connected sequentialization). Any connected proof net R
is connected sequential. If moreover R is typed then it is the translation of a
sequent calculus proof of MLLv.

Proof. Suppose R is a connected proof net: by Lemma 2.2.27, R is connected
sequential as soon as R[⊗/cut ] is and R[⊗/cut ] is a connected proof net as soon
as R is a connected proof net. For the first part, it is thus sufficient to prove
that if R is a cut-free connected proof net, then R is connected sequential. We
reason by induction on the number of internal nodes of R.

Since R is a connected proof net, it must be non-empty, so it has at least
one internal node.

If the only internal nodes of R are hyp-nodes, then they must be terminal
(there is no internal node with premises). By connectedness, R is reduced to
one hyp-node and its conclusions: we conclude by (S1).

Otherwise, R must contain at least one internal arrow. We pick one, a1,
that is maximal for ≺. Write n := t(a), which is either a `-node or a ⊗-node,
and a2 for the other premise of n. By Corollary 2.2.37, n is terminal.

If n is a `-node, then:

• we consider the proof structure R′ obtained from R by replacing n and
its conclusion with two fresh •-nodes with premises a1 and a2;

• R′ is also a connected proof net, which yields a connected sequential struc-
ture by induction hypothesis;

• we conclude by (S4).

If n is a ⊗-node, then it is splitting by Lemma 2.2.39:

• we consider the proof structure R′ obtained from R by replacing n and
its conclusion with two fresh •-nodes, with premises a1 and a2;

• since n is splitting, R′ is made of two connected components, R1 contain-
ing a1 and R2 containing a2, each being a connected proof structure;

• the induction hypothesis can be applied toR1 and toR2 to yield connected
sequential structures;

• we conclude by (S3).

For the second part, assuming R is typed, we construct a suitable proof of
MLLv by a straightforward induction on R as a connected sequential structure.

Corollary 2.2.41 (Characterization of the translation of MLLv proof trees).
A typed proof structure R is the translation of a proof tree iff it is a connected
proof net.
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2.3 Multiplicative units and the mix rules

2.3.1 Multiplicative units and jumps

Until this point, multiplicative proof nets only covered the fragment without
units MLLv. To cover the propositional fragment MLL0, it remains only to
translate the two rules (1) and (⊥). A natural idea is to extend the definition
of proof structures with two new node labels 1 and ⊥, and require that each
1-node (resp. each ⊥-node) has no premise and exactly one conclusion, of type
1 (resp. ⊥).

Then the translation ps from proof trees to proof structures is extended as
follows:

• the proof
(1)

⊢ 1

is translated to the proof structure with a single 1-node;

• the translation of
π

Γ
(⊥)

⊢ Γ,⊥

is ps(π) with an additional ⊥-node.

Note that the case of (⊥) generates a new connected component in the under-
lying graph: the proof structure associated with an MLL0 proof is not neces-
sarily connected. In particular, a cut between a ⊥-node and a 1-node forms
a connected component: eliminating this cut simply amounts to removing this
component. We write u−→ for the reduction defined by eliminating such ⊥/1
cuts, and amu−→ for the reduction obtained as the union of am−→ and u−→.

Proposition 2.3.1 (Acyclicity of MLL0 proofs). The translation ps(π) of a
sequent calculus proof π of MLL0 is a typed proof net.

Proof. The proof is the same as that of Proposition 2.2.15, except that we drop
the connectedness requirement, which allows to treat the translation of the (⊥)
rule. Concretely, we prove that ps(π) is acyclic by induction on the structure
of the MLL0 proof π, and contrary to the proof of Proposition 2.2.15 we don’t
need to check any equation on the number of nodes and arrows.

Of course, the converse does not hold: consider for instance the proof struc-
ture whose only internal node is a ⊥-node. If one wants to recover a correctness
criterion as in Section 2.2, one possible fix is the introduction of jumps, restoring
the connectivity of ⊥-nodes.
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2.3.1.1 Proof structures with jumps

A jump function on an MLL0-proof structure S is a function mapping each
⊥-node B ∈ N⊥(S) to some internal node j(B) ∈ N (S), where N (S) (resp.
N⊥(S)) is the set of nodes (resp. ⊥-nodes) of S. A proof structure with
jumps is a pair (S, j), where S is an MLL0-proof structure and j is a jump
function on S. Given a switching φ of S, the switching graph (S, j)φ is obtained
as previously, with the addition of an arrow from j(B) to B for each ⊥-node B.

A proof net with jumps is a proof structure with jumps such that each
switching graph is acyclic. A proof net with jumps is connected if all its
switching graphs are connected.

Proposition 2.3.2 (Soundness of Correctness with Units). The translation
ps(π) of a sequent calculus proof π of MLL0 can be equipped with a jump function
to obtain a connected proof net with jumps.

Proof. We reason by induction on π, the only interesting case being that of
the (⊥) rule. In this case, it is sufficient to apply the induction hypothesis
and observe that the immediate subproof π1 of π involves at least one rule:
then, attaching a new ⊥-node to any node of ps(π1) via a jump edge does not
introduce cycles and preserves the number of connected components of switching
graphs.

Let us insist on the fact that the jump function thus obtained is not defined
uniquely by π: the existence of jumps making switching graphs connected acyclic
should be considered as a side condition rather than as part of the structure.

2.3.1.2 Sequentialization of connected proof nets with jumps

As a converse to Proposition 2.3.2, we will show that if a typed MLL0-proof
structure S can be equipped with a jump function j making (S, j) a connected
proof net with jumps, then S is the translation of a proof tree of MLL0. For
that purpose, we will first establish that the image of the jump function can be
restricted to ax - and 1-nodes.

Given a proof structure with jumps (S, j) we consider the graph G(S, j)
obtained from the underlying graph G(S) by adding an arrow from j(B) to B
for each ⊥-node B. We call initial node any ax - and 1-node of S: initial nodes
are exactly those nodes without incoming arrow in G(R, j). We say a jump
function is initial if each j(B) is an initial node.

Lemma 2.3.3. If (R, j) is a proof net with jumps then G(R, j) is directed
acyclic.

Proof. Assume otherwise that there is a directed cycle π in G(R, j): this must
contain a subpath π′ that is also a directed cycle, with the additional property
that no node of R occurs twice as the target of an arrow of π′. In particular, if P
is a `-node ofR, π′ crosses at most one of the premises of P . It follows that π′ is
also a cycle in some switching graph of (R, j) which yields a contradiction.
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If (R, j) is a proof net with jumps and N is a node of R, we can thus define
dR,j(N) to be the maximum length of a directed path γ in G(R, j) with target
N .

Lemma 2.3.4. If (R, j) is a connected proof net with jumps, then there exists
an initial jump function j0 on R such that (R, j0) is also a connected proof net
with jumps.

Proof. We prove the result by induction on
∑
B∈N⊥(R) dR,j(B). If j is not

initial, we select some ⊥-node B such that j(B) is not initial, and we define a
jump function j′ which is the same as j except for its value on B: we set j′(B) to
be the source of an incoming arrow of j(B) in G(R, j). More explicitly: if j(B) is
a `- or ⊗- or cut-node, then we set j′(B) to be the source of any premise of j(B);
and if j(B) is a ⊥-node, then we set j′(B) to be j(j(B)). This transformation
does not introduce cycles and preserves the number of connected components
of switching graphs, and then we can apply the induction hypothesis.

Theorem 2.3.5 (Sequentialization with Units). For any typed connected proof
net with jumps (R, j), the underlying structure R is the translation of a sequent
calculus proof of MLL0.

Proof. Let (R, j) be a connected MLL0 proof net with jumps. By the previous
result, we can assume j to be initial. Consider the (jump-free) structure R′

obtained from R as follows:

• the nodes of G(R′) are those of G(R) minus those that were ⊥-nodes;

• the labels of nodes in R′ are the same as in R, except for initial nodes
which become hyp-nodes, as introduced in Section 2.2.4;

• the arrows of G(R′) are those of G(R), with the same source and target,
except for the source of those arrows that were conclusions of ⊥-node: for
each b with source B a ⊥-node of R, we set sR′(b) := j(B) (which is an
hyp-node in R′ because j(B) is initial);

• the order of premises and the interface of R′ are the same as those of R.

In short, R′ is obtained by merging each jump arrow with the conclusion of the
corresponding ⊥-node.

Observe that any switching path in R′ induces a path in R with the same
endpoints (identifying each ax - or 1-node in R with the corresponding hyp-node
in R′). Conversely, any switching path in R without ⊥-node as an endpoint,
induces a switching path inR′ with the same endpoints. HenceR′ is a connected
proof net and we can apply Theorem 2.2.40: R′ is connected sequential.

If moreover R is typed, we construct an MLL0-proof π such that ps(π) = R,
by induction on the connected sequentiality of R′.

(S1) If R′ is reduced to an hyp-node, then R is reduced to a number of ⊥-nodes
B1, . . . , Bn, plus one node N such that j(Bi) = N for 1 ≤ i ≤ n, and N is
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either a 1-node, or an ax -node with conclusions typed A and A⊥. Then
we can set π to be either:

(1)
1

or
(ax )

A,A⊥

followed by n applications of the (⊥) rule, and appropriate exchange rules
to match the interface of R.

(S2) IfR′ is obtained as a cut C between two proof structuresR′
1 andR′

2, where
R′

1 and R′
2 are connected sequential structures, then we can freely assume

that the cut is between the first conclusion of R′
1 and the first conclusion

of R′
2. Moreover, up to a simultaneous reordering of the conclusions of

R′ and R (which amounts to apply (ex ) rules at the bottom of the proof
under construction), we can assume that the conclusion Γ of R is of the
shape Γ1,Γ2, where each Γi matches the interface of R′

i minus its last
conclusion.

Then R is necessarily obtained as the same cut C between the first conclu-
sion of R1 and the first conclusion of R2, where R1 and R2 are connected
proof nets such that each R′

i is obtained from Ri as above. Moreover R1

and R2 are typed with conclusion sequents A,Γ1 and A⊥,Γ2, so that the
premises of C in R have dual types A and A⊥. The induction hypothesis
yields π1 and π2 such that ps(πi) = Ri, and we can set

π :=

π1

A,Γ1

π2

A⊥,Γ2
(cut)

Γ1,Γ2

Cases (S3) and (S4) are treated similarly to (S2).

Observe that, given a proof π in MLL0, the proof obtained by sequentializing
ps(π) might be quite different from π, as the rule (⊥) is only applied immediately
below (ax ) or (1): this is because we have restricted the sequentialization process
to initial jumps, and we could in fact inline this requirement into the translation
provided by Proposition 2.3.2. On the other hand, allowing jumps from arbitrary
nodes makes it easier to describe the preservation of connected proof nets with
jumps under cut elimination.

2.3.1.3 Jumps and cut elimination

Recall that cut elimination in MLL0-proof structures is the same as in MLLv-
proof structures, with the addition of the 1/⊥ case, which amounts to removing
any connected component made of a cut between a 1-node and a ⊥-node. This
preserves connected sequentiality with jumps, in the following sense:
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Lemma 2.3.6. If (S, j) is a connected proof net with jumps, and S amu−→ S ′ then
there exists a jump function j′ on S ′ making (S ′, j′) a connected proof net with
jumps.

Proof. By Lemma 2.3.4, we can assume j to be initial. Then we define j′ to
be the same as j except on those ⊥-nodes B such that j(B) is a premise node
of the cut-node C, eliminated in the step S amu−→ S ′. If C is a cut between a
1-node P0 and a ⊥-node B0, then for each ⊥-node B such that j(B) = P0, we
set j′(B) := j(B0). And if C is a cut between an ax -node A and some other
node N , then for each ⊥-node B such that j(B) = A, we set j′(B) := N .

In both cases, this transformation does not introduce cycles in switching
graphs and it preserves their number of connected components. It follows that
(S, j′) is also a connected proof net with jumps. Observe that the proofs of
Lemmas 2.2.21 and 2.2.22 only rely on transformations of switching graphs that
are local to the eliminated cut. They can thus be adapted straightforwardly
to the reduction S amu−→ S ′, considering the switching graphs of (S, j) and of
(S ′, j′).

Tracing the rewriting of jump functions through cut elimination steps is
tedious, and we have already explained that jumps are not really intended to
be part of the structure of proof nets: they only exist because we need to
relax the connectedness condition to obtain a sequentialization result with ⊥-
nodes. In most cases, the additional technicality is not worth the effort: a much
simpler course is to drop connectedness, thus considering proof nets rather than
connected proof nets. On the logical side, this amounts to augment the sequent
calculus with so-called mix rules.

2.3.2 The mix rules and sequentialization without con-
nectedness

Note that neither the Bungee Jumping Lemma (Lemma 2.2.38) nor the partial
order ≺ on arrows (Lemma 2.2.35) depend on the connectedness of the proof net
under consideration. Moreover, the only place where we use the connectedness
assumption in the proof of Theorem 2.2.40 is in the case without internal ar-
rows: then we have a sum of connected components reduced to hyp-nodes with
their conclusions, and we use connectedness to ensure there is exactly one such
component.

We can thus apply the very same sequentialization technique for general
proof nets as for connected proof nets, provided we include rules to form arbi-
trary sums of nets. This is precisely the behaviour of the mix rules.

2.3.2.1 The mix rules as proof net constructions

Recall from 1.7.3 that the two mix rules are the nullary mix rule (mix 0) and
the binary mix rule (mix 2):

(mix 0)⊢ and
⊢ Γ ⊢ ∆

(mix 2)⊢ Γ,∆
.
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We can interpret these two rules as proof structure constructions. The
(mix 0) rule is translated into the empty proof structure. The (mix 2) rule ap-
plied to two proofs π1 and π2 which translate into the proof structures S1 and
S2 leads to the disjoint union of S1 and S2:

S1 S2

Γ ∆ .

Note that eliminating a cut against a (mix 2) rule, as described at the end of
Section 1.7.3, does not change the associated proof structure.

In presence of both (mix 0) and (mix 2), the whole family of n-ary mix rules:

⊢ Γ1 · · · ⊢ Γn
(mixn)⊢ Γ1, . . . ,Γn

are derivable. We may write (mix ) for any (mixn) and, e.g., MLL0 + (mix ) for
MLL0 + (mix 0) + (mix 2).

Note that, in MLL0 +(mix ), we can construct a proof whose translation is a
single ⊥-node:

(mix 0)⊢
(⊥)

⊢ ⊥
.

In the remaining, we allow typed hyp-nodes whose conclusions induce a derivable
sequent in MLL0 + (mix ), so that hyp-nodes subsume ax -nodes, but also 1- and
⊥-nodes, even in the typed case.

2.3.2.2 Sequentialization of proof nets

The proof of sequentialization now follows the same path as in the connected
case. We first relax the notion of sequentiality, to allow for arbitrary sums of
sequential nets.

We say that an unordered proof structure S is sequential if, assuming
inductively that S1 and S2 are sequential unordered proof structures, either one
of the conditions (S1) to (S4) holds, or one of the following holds:

(S5) S is the empty proof structure;

(S6) S is the sum of S1 and S2.

S1 S2

And we say that a proof structure S is sequential if the underlying unordered
proof structure is. Note that (S1) includes the case of a single 1- or ⊥-node.

Lemma 2.3.7 (Untyped correctness). Any sequential proof structure is a proof
net.
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Proof. By induction on the definition of sequential proof structures: again, cases
(S1) to (S4) are treated exactly as in the proof of Proposition 2.2.15; case (S5)
is trivial, and (S6) follow straightforwardly from the induction hypotheses.

The analogue of Lemma 2.2.27 is obtained similarly:

Lemma 2.3.8. For any proof structure S:

• S is sequential iff S[⊗/cut ] is.

• S is a proof net iff S[⊗/cut ] is.

Theorem 2.3.9 (Sequentialization with (mix )). Any proof net R is sequential.
If moreover R is typed (in MLL0 +(mix )) then it is the translation of a sequent
calculus proof of MLL0 + (mix ).

Proof. Suppose R is a proof net. As in the proof of Theorem 2.2.40, we can
assume that R is cut-free, and we reason by induction on the number of internal
nodes of R.

If R has no internal node, then it must be empty and we apply (S5).
If the only internal nodes of R are hyp-nodes, then they must be terminal

(there is no internal node with premises). Pick one: its connected component
is sequential by (S1); the remaining components form a sequential structure by
induction hypothesis; and we conclude by (S6).

Otherwise, R must contain at least one internal arrow. We pick one that
is maximal for ≺ (among internal arrows), and write n for its target, which is
terminal by Corollary 2.2.37. We can then conclude as in the proof of The-
orem 2.2.40: if n is a `-node then we apply (S4); otherwise it is a splitting
⊗-node by Lemma 2.2.39 and we apply (S3).

For the second part, assuming R is typed, we construct a suitable proof of
MLL0+(mix ) by a straightforward induction on R as a sequential structure.

2.3.3 Concluding remarks on sequentialization

The sequentialization process is an important technical step in any introduction
to proof nets. In the previous sections we have chosen to stick to a minimalistic
and quite narrow point of view: we have introduced just enough notions to
establish Theorem 2.3.9. In this paragraph, we try provide a bigger picture
of the subject, and relate our proof method with other techniques from the
literature.

2.3.3.1 On splitting nodes

Recall that, although we have focused our procedure on the notion of splitting
terminal ⊗-node, we have defined splitting ⊗-nodes more generally, as those
⊗-nodes that are not part of a cycle in the structure. A splitting ⊗-node T in
a typed structure S with conclusion Γ induces three components in G(S) that
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are connected only through T : one for each premise, and one for the conclusion.
Up to a reordering of Γ, we can then depict S as:

R =

A

S1
B

S2

⊗

S0

Γ0 Γ1 Γ2

with Γ = Γ0,Γ1,Γ2. Note that, whereas S1 an S2 are indeed typed structures
whose conclusions typed A and B have been merged into T , S0 is not really a
proof structure in the sense we have considered. Rather, S0 could be considered
as an open proof structure: we will not define the notion formally, but it is the
direct analogue of open proof trees in the setting of proof structures, and it is
easy to extend the definitions so that open proof trees translate to typed open
proof nets. Then, provided S0, S1 and S2 are the translations of proof trees,
say π0, π1 and π2 respectively, it is easy to check that S is also the translation
of a proof tree:

π1

A,Γ1

π2

B,Γ2
(⊗)

A⊗B,Γ1,Γ2

π0

Γ0,Γ1,Γ2

.

Note that we could define splitting cut-nodes in the same way, and treat them
in the exact same manner, except that there is no third component associated
with the conclusion: this is an alternative to considering cut-free nets up to the
transformation −[⊗/cut ].

A similar approach can be applied to `-nodes. We say a `-node P in a
structure S is splitting if its conclusion arrow is not part of a cycle in G(S):
in other words, there is no path between the conclusion of P and any of its
premises, other than through P . A splitting `-node P in a typed structure S
with conclusion Γ now induces two components in G(S) that are connected only
through P : one containing the premises, and one containing the conclusion. Up
to a reordering of Γ, we can then depict S as:

R =

A B

S1

`
S0

Γ0 Γ1
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with Γ = Γ0,Γ1. Again, provided S0 and S1 are the translations of (possibly
open) proof trees, say π0 and π1 respectively, S is also the translation of a proof
tree:

π1

A,B,Γ1
(`)

A`B,Γ1

π0

Γ0,Γ1

.

So, instead of focusing on terminal nodes, a sequentialization strategy could
be as follows: if a non empty proof net has a terminal hyp-node, this component
is sequential and we proceed inductively with the rest; otherwise it contains a
`-node or a ⊗-node, and it is then sufficient to show that one is splitting to
reason inductively. To show that proof nets are sequential, it is thus sufficient
to show that a (cut-free) proof net that is not reduced to terminal hyp-nodes
contains a splitting (⊗- or `-) node.

It turns out that Bungee Jumping also allows to follow this strategy:

Lemma 2.3.10. Let R be a non empty proof net:

• if R contains a `-node, then one of them is splitting;

• if all the terminal nodes of R are ⊗-nodes (this is in particular the case if
R has no `-node, and no terminal hyp-node) then one of them is splitting.

Proof. The second item is a direct consequence of Corollary 2.2.37 and Lemma 2.2.39.
The proof of the first item is similar to that of Lemma 2.2.39. If R contains

a `-node, then we pick an arrow a1 that is a premise of some `-node P , and
such that a1 is maximal for ≺ among premises of `-nodes. We show that P is
splitting.

Assume, towards a contradiction, that P is not splitting: we pick a cycle ω
in B(P ), with a+0 as first edge. Consider the first bridge b+1 b

−
2 of ω: write κ for

its pier, with premises b1 and b2. Then write γ for the prefix of ω with last edge
b+1 : this is strong (its first edge is a+0 ), simple (it is a subpath of a cycle), and
bridge-free (by construction). We obtain γ : a1 ↷ b1.

Moreover, there is no path δ : b1 ↷ p with p occurring in γ (hence in ω):
this would contradict the Bungee Jumping Lemma. We thus obtain a1 ≺ b1,
contradicting the maximality of a1 since b1 is a premise of a `-node.

Remark 2.3.11. We have argued that, to establish that proof nets are sequential,
it is sufficient to show that any (cut-free) proof net with at least a ⊗- or `-
node admits a splitting node. Conversely, observe that any sequential proof
net R not reduced to a sum of terminal hyp-nodes contains a terminal splitting
node: starting from the root of a derivation of sequentiality of R, we split
R into disjoint connected components via applications of (S6) until we reach
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an application of (S2), (S3) or (S4), yielding either a splitting cut-node, or a
terminal and splitting ⊗-node, or a terminal (hence splitting) `-node.

Hence proving sequentialization for proof nets (connected or not) is essen-
tially equivalent to establishing the existence of splitting nodes.

2.3.3.2 On splitting nodes in the connected case

The proof of Lemma 2.3.10 allows to identify in a proof net some splitting `-
nodes, and precisely the ones having a premise that is maximal w.r.t. the order
relation previously defined on the arrows of a proof net. However, there exist
splitting `-nodes whose premises are not maximal, like the non terminal `-node
of the following connected proof net:

ax

`
ax

⊗

`
.

In the connected case, we are going to show that splitting `-nodes are exactly
characterized as the ones that are not in the proper cycle of another `-node.

Lemma 2.3.12 (Non-splitting node in a connected proof net). Every ⊗-node
or `-node of a connected proof net that is not splitting is in the proper cycle of
some (other) `-node.

Proof. Fix a connected proof net R and a ⊗- or `-node n in R. By definition,
assuming n is non-splitting yields a strong cycle γ. For each `-node P occurring
in γ (possibly including n), either γ crosses exactly one premise of P together
with its conclusion, or P is the pier of a bridge in γ (and n ̸= P in this case).
We fix a switching φ of R selecting the premise of P crossed by γ when there is
exactly one, and selecting (arbitrarily) a premise of all the other `-nodes of R.

Since γ is a strong cycle in a proof net it must have at least one bridge ` by
Corollary 2.2.31. Thus we can write γ = γ0 · · · γn+1 uniquely (for some n ≥ 0)
so that the following holds:

• for 0 ≤ i ≤ n, the last edge of γi and the first edge of γi+1 form a bridge
a+i,1a

−
i,2, where ai,1 and ai,2 are the premises of pier Pi;

• there is no other bridge in γ.

In particular, each γi induces a path γ′i in Rφ with the same edges.
Write a0, a1, a2 for the three arrows adjacent to n, and assume, w.l.o.g. that

the first edge of γ′0 (and of γ) crosses a0 and the last edge of γ′n+1 (and of γ)
crosses a1. Note that, by the acyclicity and connectedness of Rφ, removing the
node n induces three “connected components”. More formally, for 0 ≤ i ≤ 2,
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consider the subgraph Gi of Rφ, consisting of those nodes and arrows occurring
in any path crossing ai and none of the aj ’s for j ̸= i. Each node and arrow
of Rφ then occurs in exactly one of the Gi’s, except for n, which occurs in all
three. Moreover, since γ is simple, each γ′i crosses at most one of the aj ’s, hence
it is contained in some Gj .

By construction γ0 is in G0 and γn+1 is in G1. It follows that there exists
0 ≤ i ≤ n such that γi is in G0 and γi+1 is in Gj with j > 0. Then there are
paths δ′0 in G0 and δ′1 in Gj , both from n to Pi. Since δ′0 and δ′1 are disjoint
paths in the switching graph Rφ, they induce disjoint switching paths δ0 and
δ1 in R, which are thus bridge-free. Since δ′0 is in G0, its first edge must be the
same as that of γ′0, because it is the only edge in G0 with source n: since γ is
strong and γ0 is a non-empty prefix of γ, γ0 is also strong, so the first edge of
γ′0 is the same as that of γ0, hence δ0 is strong too. By Lemma 2.2.32, δ1δ0 is a
bridge-free cycle, and by Lemma 2.2.30 it must be a proper cycle of Pi.

Lemma 2.3.13. A ⊗- or `-node n of a connected proof net is splitting if and
only if n does not belong to a proper cycle of some `-node p with n ̸= p.

Proof. If n is a splitting ⊗-node, then it is not part of a cycle, a fortiori it is
not part of a proper cycle. If n is a splitting `-node, then its conclusion arrow
is not part of a cycle: if n occurs in a cycle γ with source p ̸= n, n must occur as
the pier of a bridge of γ, hence γ is not a proper cycle. The converse implication
is Lemma 2.3.12.

Remark 2.3.14. Notice that, in a connected proof net, if the `-node p, with
premises b1 and b2, is in a proper cycle γ of the `-node n, then there exists a
premise a of n such that bi ≺ a for i ∈ {1, 2}. Indeed: fix b0 to be the conclusion
of p, and orient γ of n so that it contains b+0 , then pick a so that the last edge
of γ is a+; then we conclude by Lemma 2.2.38, as in the proof of Lemma 2.3.10.

We can thus define a binary relation ⋊ on the `-nodes of a connected proof
net R defined as p ⋊ n iff p is in a proper cycle of n, and by the previous ob-
servation and Lemma 2.2.35, we obtain that ⋊ has maximal elements. Another
way to state Lemma 2.3.13 in the case of `-nodes is that the maximal elements
of a connected proof net R w.r.t. the binary relation ⋊ are exactly the splitting
`-nodes of R.

2.3.3.3 Sequentialization in the literature

In the first paper on the subject [16], Girard proves sequentialization for MLLv
using a correctness criterion called “the longtrip criterion”: the proof was based
on the existence of a splitting ⊗-node. Shortly after Girard’s discovery of this
criterion, Danos and Regnier found a simplification and proved that it was
equivalent to the acyclicity and connectedness of switching graphs: this is the
criterion we presented in this chapter. Danos and Regnier’s proof of sequen-
tialization was based on the existence of a splitting `-node (called “section”
in [7]).
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The complexity of deciding whether a proof structure S is a proof net by
testing the acyclicity of all switching graphs is exponential in the number of `-
nodes of S. Several alternative criteria have thus been designed, including ones
that can be checked in linear time: we refer to the work of Jacobé de Naurois
and Mogbil [28] for a review of the subject. The latter authors moreover give a
lower bound, establishing that the decision problem is NL-complete.

Note that, in MLLv, once we know that a given typed proof structure is a
proof net, deciding whether it is a connected proof net (and thus the translation
of a proof tree) is easily done in linear time: as in the proof of Lemma 2.2.13,
it is sufficient to count the numbers n of nodes, p of `-nodes and a of arrows,
and to check that n+ p = a+ 1.

2.3.3.4 Proof nets with units

In presence of multiplicative units, we have considered two variants: one which
introduces non canonical information (jumps), but allows to characterize effi-
ciently those proof structures that are translations of proof trees in MLLu; and
one which does not introduce jumps but relaxes the correctness criterion, leading
to the introduction of (mix ) rules.

Note that the MLLu proofs

(1)
1

(⊥)
⊥,1

(1)
1

(⊥)
⊥,1

(⊗)
⊥⊗⊥,1,1

(ex (2, 3, 1))
1,1,⊥⊗⊥

(`)
1` 1,⊥⊗⊥

and

(1)
1

(⊥)
⊥,1

(1)
1

(⊥)
⊥,1

(⊗)
⊥⊗⊥,1,1

(ex (3, 2, 1))
1,1,⊥⊗⊥

(`)
1` 1,⊥⊗⊥

are translated to the same proof net, but induce different jumps. Forgetting
about jumps identifies those two proof trees, but it is easy to check that this
identification cannot be obtained by the application of local commutations be-
tween independent inferences.5

It is then natural to ask whether one can introduce another notion of proof
nets for MLLu which would be canonical:6 two proof trees are translated to the
same proof net iff they are equivalent up to local commutations. It turns out that
there is a strong, theoretical obstacle to the existence of such a notion. Indeed,
Heijltjes and Houston [22] have established that proof equivalence in MLLu is
PSPACE-complete. It follows that, for such a canonical notion proof nets, if
the translation from proof trees to proof nets is tractable, then the problem of
deciding whether two proof nets are equal cannot be (and vice versa).

So, to work with units (and the same will apply in presence of exponential
modalities), one must chose to either overspecify the structure of proof nets, e.g.

5Another manifestation of this discrepancy, that goes beyond the scope of the present
chapter, is that there are denotational models of MLLu, i.e. ∗-autonomous categories (see
Section 4.1.1.1), that do not equate the above two proof trees.

6In other words, such a notion should be a syntactic presentation of ∗-autonomous cate-
gories.
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with jumps, or to accept the (mix ) rules and drop the connectedness condition.
Most of the time we will opt for the latter, simpler solution.

2.4 Multiplicative Exponential Proof Nets

We introduce now the exponential connectives which provide linear logic with
real expressive power. The rewriting theory of proof nets becomes much richer.

2.4.1 Boxes

A first, naïve idea to define proof structures for MELL, is to simply introduce
one new node for each new rule — (!), (?), (c) and (w):

A

!

!A

for
?Γ, A

(!)
?Γ, !A

A

?

?A

for
Γ, A

(?)
Γ, ?A

?A ?A

c

?A

for
Γ, ?A, ?A

(c)
Γ, ?A

w

?A

for
Γ

(w)
Γ, ?A

but it turns out that too much information is lost w.r.t. sequent calculus.
Indeed, the promotion rule

?Γ, A
(!)

?Γ, !A

imposes a constraint on the shape of the context, where each formula must
be of the shape ?B: so we must be able to impose a similar constraint when
adding a !-node to a proof structure. Even more importantly, the dynamics
of cut elimination on exponentials is not defined locally. Indeed, the key cut
elimination steps from Fig. 1.5 might involve the duplication or erasure of a
whole proof sub-tree.

We must thus be able to identify, within a proof structure, a sub-structure
associated with each !-node. And this requires additional information:
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Example 2.4.1. Consider the two proof trees:

(ax )
X⊥, X

(?)
?X⊥, X

(ax )
Y ⊥, Y

(?)
?Y ⊥, Y

(⊗)
?X⊥, X ⊗ ?Y ⊥, Y

(?)
?X⊥, ?(X ⊗ ?Y ⊥), Y

(!)
?X⊥, ?(X ⊗ ?Y ⊥), !Y

and

(ax )
X⊥, X

(?)
?X⊥, X

(ax )
Y ⊥, Y

(?)
?Y ⊥, Y

(!)
?Y ⊥, !Y

(⊗)
?X⊥, X ⊗ ?Y ⊥, !Y

(?)
?X⊥, ?(X ⊗ ?Y ⊥), !Y

which differ only by the level at which we apply the promotion rule. By the
previous translation, both are mapped to the structure:

X⊥ X

ax

?
Y ⊥ Y

ax

?

!
⊗

?

whereas the two proofs behave very differently from each other. Indeed, if the
!Y conclusion is cut against a contraction or a weakening, different sub-trees
must be duplicated or erased — in particular, the axiom on X will be involved
in this transformation for the former proof tree, but not for the latter.

An MELL proof structure must thus come with additional information: the
standard technique is to equip proof structures with a notion of promotion
box, identifying the whole sub-structure corresponding to the proof tree asso-
ciated with the application of a promotion rule.

Example 2.4.2. Graphically, the proof structure associated with the second proof
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of Example 2.4.1 might be depicted as:

X⊥ X

ax

?
Y ⊥ Y

ax

?

!
⊗

?

where the bounding box delineates the sub-structure associated with the proof
tree

(ax )
Y ⊥, Y

(?)
?Y ⊥, Y

.

For technical reasons, it is in fact more practical to add specific nodes for the
auxiliary ports of promotions boxes, i.e. those arrows which cross the boundary
of the box. This way, given a box in a proof structure, we can distinguish
between:

• the arrows and nodes inside the box, which are arrows and internal nodes
of the proof structure associated with this box — the content of the box;

• the !-node and the auxiliary ports of the box, which are on the border of
the box, and correspond with the conclusion nodes of the content, but are
also internal nodes of the top level proof structure;

• the nodes and arrows outside the box, which can be conclusions of nodes
on the border of the box, but are never directly connected with nodes
inside the box.

Example 2.4.3. Again, the proof structure associated with the second proof of
Example 2.4.1 might be depicted as:

X⊥ X

ax

?

Y ⊥ Y

ax

?

!p

⊗

?

where we have added an auxiliary port node marking the border of the box,
where it was crossed by the conclusion of the ?-node inside the box.
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Note that the promotion boxes of a proof structure must be correctly nested:
given two !-nodes, either the associated boxes are disjoint, or one of the boxes
is included in the other. This means that boxes are organised into a tree, that
we will call the box tree of the proof structure.

2.4.2 Proof Structures for MELL
An untyped MELL proof structure S is given by:

• a directed acyclic graph G(S);

• a labelling of the nodes of G(S) with labels in {ax , cut ,⊗,`, !, d ,w , c, p, •}
such that:

– each ax -node has two conclusions and no premise;

– each cut-node has two premises and no conclusion;

– each ⊗-node, `-node or c-node has two premises and one conclusion;

– each d -node or p-node has one premise and one conclusion;

– each w -node has no premise and one conclusion;

– each •-node has one premise and no conclusion;

• an ordering of the premises of each ⊗-node, `-node or c-node;

• an ordering of the •-nodes;

• a rooted tree BS , called the box tree of S, whose nodes are the !-nodes
of S, plus the root node that we denote by ⋆S (the top level of S);

• a map, also denoted BS(−), associating with each node or arrow of G(S)
a node of BS — the box level of the former node or arrow — such that:

– all •-nodes are mapped to the root of BS ;

– for each !-node n, BS(n) is the parent of n in BS , and the unique
premise of n is mapped to n;

– the unique premise of each p-node n is mapped to a child of BS(n);
– except for the premises of !-nodes and p-nodes, the premises and

conclusions of each node n are mapped to BS(n).

Note that the conclusions of a proof structure are always at top level. Moreover
observe that the function BS(−) is uniquely defined by its value on cut-nodes
and on the premises of p-nodes: in all the other cases, the box level of a node
or arrow can be deduced from that of its conclusion or target respectively.

We will often omit the subscript S, when the proof structure under consid-
eration is clear from the context.

Given a !-node n in a proof structure S, we refer to the following data as the
promotion box associated with n in S:
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• the main door of the box is n;

• the auxiliary doors of the box are the p-nodes of S whose premises are
at box level n — and whose conclusion is thus at box level B(n);

• the border of the box is the set of its main door and auxiliary doors
— note that these are the nodes having a premise at box level n and a
conclusion at box level B(n);

• the level of the box is B(n) — which is the common level of its doors;

• the content of the box is the subgraph of G, made of the border of the
box, plus those nodes and edges whose box level occurs in the subtree of
B rooted at n.

We will often refer to the box of n just as n.
Given an enumeration I of the border of n, we can define the proof struc-

ture of n, denoted by β(n, I) as follows:

• G(β(n, I)) is the content of n;

• the labelling of nodes is the same as in S, except for border nodes, which
become •-nodes;

• the ordering of premises is inherited from that in S;

• the interface, i.e. the order of the •-nodes, is given by I;

• Bβ(n,I) is the subtree of BS rooted at n;

• the map Bβ(n,I)(−) is defined by restricting BS(−) except for •-nodes
which are now at top level ⋆β(n,I) = n.

We will often keep the interface implicit and just write β(n). In particular in
pictures, I is given by the order of doors from left to right unless explicitly
noted. We might also abusively refer to β(n) as the content of n, since all the
structure is canonically defined as soon as the interface is fixed.

2.4.3 Multiplicative Exponential Linear Logic with Mix

We consider the multiplicative exponential fragment of propositional linear logic
without units: MELLv, in its one-sided version. Recall — from Section 1.3.5 —
that the formulas are:

X X⊥ A⊗B A`B !A ?A

where X ranges over positive atomic formulas and A,B range over (DM-normal)
formulas, and that linear negation is the involution defined inductively byX⊥⊥ :=
X, (A⊗B)⊥ := A⊥ `B⊥ and (!A)⊥ := ?A⊥.
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Note that the weakening rule:

⊢ Γ
(w)

⊢ Γ, ?A

behaves exactly like the (⊥) rule:

⊢ Γ
(⊥)

⊢ Γ,⊥

by adding a formula to a derivable sequent. This means that, to design proof
nets for MELL, we will face the same connectedness issues as with multiplica-
tive units. And these can be solved similarly: either by introducing jumps, or
by relaxing the connectedness requirement and adding the (mix ) rules to the
system. We chose the latter path, which requires less technicality.

Remark 2.4.4. In passing, note that multiplicative units can be encoded into
MELLv, even in the absence of second order quantification.7 Indeed, given any
atomic formula X, we have a linear equivalence 1 ˛ !(X ⊸ X). More precisely,
writing 1′ := !(X ⊸ X) and ⊥′ := ?(X⊗X⊥) = (!(X ⊸ X))⊥, not only can we
prove 1 ⊢ 1′ (i.e. ⊢ ⊥,1′) and 1′ ⊢ 1 (i.e. ⊢ ⊥′,1), but we can derive analogues
of rules (1) and (⊥) for 1′ and ⊥′ respectively. Namely:

(ax )
⊢ X⊥, X

(`)
⊢ X⊥ `X

(!)
⊢ !(X⊥ `X)

and
⊢ Γ

(?)
⊢ Γ, ?(X ⊗X⊥)

.

Moreover, cutting the first proof against the conclusion ?(X⊗X⊥) of the rule (?),
the cut elimination process yields the underlying proof of ⊢ Γ: this mimics the
cut elimination rule between (1) and (⊥). It follows that, as far as provability,
cut elimination or the geometry of proof nets are concerned, MELL behaves
the same with or without multiplicative units, and this whole section could be
adapted to MELL0 instead of MELLv.

Instead of MELLv + (mix ), we consider the sequent calculus MELLmix ob-
tained from the rules of MLLv by adding the (mix ) rules, together with:

(w0)⊢ ?A
⊢ Γ, ?A, ?A

(c)
⊢ Γ, ?A

⊢ Γ, A
(?)

⊢ Γ, ?A

⊢ ?Γ, A
(!)

⊢ ?Γ, !A

Due to the presence of mix rules, our presentation of the weakening rule

(w0) is equivalent to the original one
⊢ Γ

(w)
⊢ Γ, ?A

. Indeed, the two rules are

inter-derivable:
⊢ Γ

(w0)⊢ ?A
(mix 2)⊢ Γ, ?A

(mix 0)⊢
(w)

⊢ ?A

7This contrasts with what was done in Section 1.3.3.3.
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and, with the obvious cut elimination rules for (mix 2) and (w0), cut elimination
behaves the same in MELLmix and in MELLv + (mix ). We keep this simulation
statement informal, as the focus is on proof nets, and it should already be clear
that the translations induced by both versions of weakening are the same: (w)
should add a terminal weakening node to an already constructed proof net,
while (w0) should be translated as a single weakening node; and the (mix ) rules
allow to turn one construction into the other.
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Chapter 3

Rel

3.1 Relational interpretation of the sequent cal-
culus: resource derivations

With any formula A of linear logic, we can associate a set [A] of tokens, the
definition is as follows.

[1] = [⊥] = {∗} [A⊗B] = [A`B] = [A]× [B]

[0] = [⊤] = ∅ [A⊕B] = [A & B] = {1} × [A] ∪ {2} × [B]

[!A] = [?A] =Mfin([A])

Let us define a resource sequent as a sequent

⊢r a1 : A1, . . . , ak : Ak

where A1, . . . , Ak are formulas and ai ∈ [Ai] for each i ∈ {1, . . . , k}. Given a
resource context Φ = (a1 : A1, . . . , ak : Ak), we use Φ for the underlying context
(A1, . . . , Ak).

Then we introduce a deduction system for these sequents.

a ∈ [A]

⊢r a : A⊥, a : A

⊢r Φ, a : A ⊢r a : A⊥,Ψ

⊢r Φ,Ψ

⊢r ∗ : 1
⊢r Φ

⊢r Φ, ∗ : ⊥

⊢r Φ, a : A ⊢r Ψ, b : B
⊢r Φ,Ψ, (a, b) : A⊗B

⊢r Φ, a : A, b : B

⊢r Φ, (a, b) : A`B

No rule for 0 No rule for ⊤

⊢r Φ, a : A

⊢r Φ, (1, a) : A⊕B
⊢r Φ, b : B

⊢r Φ, (2, b) : A⊕B

107
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⊢r Φ, a : A

⊢r Φ, (1, a) : A & B

⊢r Φ, b : B
⊢r Φ, (2, b) : A & B

⊢r Φ
⊢r Φ, [] : ?A

⊢r Φ, l : ?A, r : ?A
⊢r Φ, l + r : ?A

⊢r Φ, a : A

⊢r Φ, [a] : ?A(
⊢r mj

1 : ?A1, . . .m
j
k : ?Ak, b

j : B
)n
j=1

⊢r
∑n
j=1m

j
1 : ?A1, . . . ,

∑n
j=1m

j
k : ?Ak, [b

1, . . . , bn] : !B

A derivation θ in this system will be called a resource derivation.
Let π be a proof of ⊢ Γ. We define T (π) as a set of resource derivations θ,

each of them having a conclusion ⊢r Φ such that Φ = Γ. The set T (π) is defined
by induction on π.

If π is an axiom

⊢ A⊥, A

then T (π) is the set of all resource axioms

⊢r a : A⊥, a : A

for a ∈ [A].
If π is a cut

.... π1
⊢ Γ1, A

.... π2

⊢ A⊥,Γ2

⊢ Γ1,Γ2

then T (π) is the set of all resource derivations

..... θ1
⊢r Φ1, a : A

..... θ2

⊢r a : A⊥,Φ2

⊢r Φ1,Φ2

where θi ∈ T (πi) for i = 1, 2. The important constraint on θ1 and θ2 is that the
corresponding tokens in A and A⊥ are the same (namely a). Notice that this
implies Φi = Γi for i = 1, 2 and hence Φ1,Φ2 = Γ1,Γ2.

If π is the proof

⊢ 1

then T (π) is the singleton consisting of the proof

⊢r ∗ : 1
If π is the proof
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.... π1
⊢ Γ

⊢ Γ,⊥

then T (π) is set et of all resource derivations

..... θ1
⊢r Φ

⊢r Φ, ∗ : ⊥

such that θ1 ∈ T (π1).
If π is the proof

.... π1
⊢ Γ1, A1

.... π2
⊢ Γ2, A2

⊢ Γ1,Γ2, A1 ⊗A2

then T (π) is the set of all proofs

..... θ1
⊢r Φ1, a1 : A1

..... θ2
⊢r Φ2, a2 : A2

⊢r Φ1,Φ2, (a1, a2) : A1 ⊗A2

with θi ∈ T (πi) for i = 1, 2.
If π is the proof

.... π1
⊢ Γ, A1, A2

⊢ Γ, A1 `A2

then T (π) is the set of all resource derivations

..... θ1
⊢r Φ, a1 : A1, a2 : A2

⊢r Φ, (a1, a2) : A1 `A2

with θ1 ∈ T (π1).
If π is the proof

⊢ Γ,⊤

then T (π) = ∅.
If i ∈ {1, 2} and π is the proof
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.... π1
⊢ Γ, Ai

⊢ Γ, A1 ⊕A2

then T (π) is the set of all resource derivations

..... θ1
⊢r Φ, a : Ai

⊢r Φ, (i, a) : A1 ⊕A2

If π is the proof

.... π1
⊢ Γ, A1

.... π2
⊢ Γ, A2

⊢ Γ, A1 & A2

then T (π) is the set of all resource derivations

..... θ
⊢r Φ, a : Ai

⊢r Φ, (i, a) : A1 & A2

for i ∈ {1, 2} and θ ∈ T (πi).
If π is the proof

.... π1
⊢ Γ

⊢ Γ, ?A

then T (π) is the set of all resource derivations

..... θ1
⊢r Φ

⊢r Φ, [] : ?A

for θ1 ∈ T (π1).
If π is the proof

.... π1
⊢ Γ, ?A, ?A

⊢ Γ, ?A

then T (π) is the set of all resource derivations
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..... θ1
⊢r Φ, l : ?A, r : ?A
⊢r Φ, l + r : ?A

for θ1 ∈ T (π1).
If π is the proof

.... π1
⊢ Γ, A

⊢ Γ, ?A

then T (π) is the set of all resource derivations

..... θ1
⊢r Φ, a : A

⊢r Φ, [a] : ?A

for θ1 ∈ T (π1).
If π is the proof

.... π1
⊢ ?A1, . . . , ?Ak, B

⊢ ?A1, . . . , ?Ak, !B

then T (π) is the set of all resource derivations

..... θ1

⊢r m1
1 : ?A1, . . . ,m

1
k : ?Ak, b

1 : B · · ·

..... θn
⊢r mn

1 : ?A1, . . . ,m
n
k : ?Ak, b

n : B

⊢r
∑n
j=1m

j
1 : ?A1, . . . ,

∑n
j=1m

j
k : ?Ak, [b

1, . . . , bn] : !B

for all n ∈ N and θ1, . . . , θn ∈ T (π1).
The relational interpretation [π] of a proof π of ⊢ A1, . . . , Ak is the set of all

tuples (a1, . . . , ak) ∈
∏k
i=1[Ai] such that there is a resource derivation θ ∈ T (π)

of the resource sequent ⊢r a1 : A1, . . . , ak : Ak.
One can prove that if π reduces to π′ by cut-elimination then [π] = [π′]. We

will present now the same relational semantics, but in a categorical way.

3.2 The relational model as a category

We introduce now the simplest (and perhaps most fundamental) ∗-autonomous
category equipped with an exponential structure: the category of sets and rela-
tions.
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Let Rel be the category whose objects are sets and where Rel(X,Y ) =
P(X × Y ), identities being the diagonal relations and composition being defined
as follows: if R ∈ Rel(X,Y ) and S ∈ Rel(Y, Z) then

S R = {(a, c) ∈ X × Z | ∃b ∈ Y (a, b) ∈ R and (b, c) ∈ S} .

Let x ⊆ X, we set R · x = {b ∈ Y | ∃a ∈ x (a, b) ∈ R} ⊆ Y which is the direct
image of x by R. We also define R⊥ = {(b, a) ∈ Y × X | (a, b) ∈ Y } which is
the transpose of R (considering R as a matrix with coefficients in {0, 1}). Given
x ⊆ X and y ⊆ Y , we have

(R · x) ∩ y = pr2(R ∩ (x× y)) and (R⊥ · y) ∩ x = pr1(R ∩ (x× y)) (3.1)

where pr1 and pr2 are the two projections of the cartesian product in the category
Set of sets and functions (the ordinary cartesian product “×”).

Lemma 3.2.1. An isomorphism in Rel is a relation which is a bijection.

We consider the symmetric monoidal structure on Rel given by the tensor
product X⊗Y = X×Y and the unit 1 an arbitrary singleton {∗}. The neutral-
ity, associativity and symmetry isomorphisms are defined as the obvious corre-
sponding bijections (for instance, the symmetry isomorphism σX,Y ∈ Rel(X ⊗
Y, Y ⊗ X) is given by the bijection (a, b) 7→ (b, a)). This symmetric monoidal
category is closed, with linear function space given by X ⊸ Y = X × Y , the
natural bijection between Rel(Z ⊗ X,Y ) and Rel(Z,X ⊸ Y ) being induced
by the cartesian product associativity isomorphism. Last, one takes for ⊥ an
arbitrary singleton, and this turns Rel into a ∗-autonomous category. One de-
notes as ⋆ the unique element of 1 and ⊥. Then, up to natural isomorphism,
X⊥ = X.

This category is cartesian, with cartesian product X1 & X2 of X1 and X2

defined as {1} ×X1 ∪ {2} ×X2 with projections pri = {((i, a), a) | a ∈ Xi} (for
i = 1, 2), and terminal object ⊤ = ∅. Given morphisms Ri ∈ Rel(Y,X1, X2),
their cartesian pairing ⟨R1, R2⟩ ∈ Rel(Y,X1 & X2) is ⟨R1, R2⟩ = {(b, (i, a)) |
(b, a) ∈ Ri for i = 1, 2}.

Rel is also a Seely category (see Section 4.1), for a comonad !_ defined as
follows:

• !X is the set of all finite multisets of elements of X;

• if R ∈ Rel(X,Y ), then we set !R = {([a1, . . . , an], [b1, . . . , bn]) | n ∈
N and ∀i (ai, bi) ∈ R};

• dX ∈ Rel(!X,X) is dX = {([a], a) | a ∈ X};

• pX = {(m1 + · · ·+mn, [m1, . . . ,mn]) | n ∈ N and m1, . . . ,mn ∈ !X}.

The monoidality isomorphism m2
X,Y ∈ Rel(!X ⊗ !Y , !(X & Y )) is the bijection

which maps ([a1, . . . , al], [b1, . . . , br]) to [(1, a1), . . . , (1, al), (2, b1), . . . , (2, br)]. And
m0 is the obvious bijection from 1 = {∗} to !⊤ = {[]}.
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Then the associated structural morphisms wX ∈ Rel(!X, 1) and cX ∈ L(!X, !X⊗
!X) are

wX = {([], ∗)}
cX = {(m, (m1,m2)) | m = m1 +m2} .

The induced lax monoidal structure (µ0 ∈ L(1, !1) and µ2
X,Y ∈ L(!X⊗!Y , !(X ⊗ Y )))

of !_ is

µ0 = {(∗, k[∗]) | k ∈ N}
µ2
X,Y = {(([a1, . . . , an], [b1, . . . , bn]), [(a1, b1), . . . , (an, bn)])

| a1, . . . , an ∈ X and b1, . . . , bn ∈ Y } .

If R ∈ L(!X1⊗ · · ·⊗ !Xk, Y ) then the generalized promotion R! ∈ L(!X1⊗ · · ·⊗
!Xk, !Y ) of R is

R! = {(m1
1 + · · ·+m1

n, . . . ,m
k
1 + · · ·+mk

n, [b1, . . . , bn]) |
∀i ∈ {1, . . . , n} (m1

i , . . . ,m
k
i , bi) ∈ R} .

Applying the general interpretation of Section ?? and ??, we can interpret
any proof structure p such that ⊢ p : A1, . . . , Ak as an element [p] of Rel(1, [A1]`
· · · ` [Ak]) ≃ P([A1]× · · · × [Ak]) where the interpretation of formulas is also
defined in Section ??; here: [1] = [⊥] = {∗}, [A⊗B] = [A`B] = [A]× [B] and
[!A] = [?A] =Mfin([A]).

Remark 3.2.2. This model is often presented as “degenerate”, the main reason
for this is that it makes no difference between the interpretation of a type (for-
mula) and of its linear negation (thus identifying ` and ⊗, ? and !, & and
⊕ when additive connectives are taken into account). This however does not
mean that the interpretation of proofs is degenerate. It is in some sense quite
the contrary: as shown by De Carvalho [DeCarvalho], Guerrieri and Tortora
de Falco [GuerrieriTortora], two cut-free proof-nets which have the same in-
terpretation in Rel are “essentially” equal (that is equal up to the equivalence
on proofs induced by Rétoré’s reduction relation, including the fact that w is
neutral for c and that c is associative and commutative).

However, one main weakeness of Rel is that types are interpreted as un-
structured sets: the interpretation of a type A does not tell us anything about
the specific subsets of [A] which occur as interpretations of proof-nets p such
that ⊢ p : A. This was not the case of the original coherence space1 model
discovered by Girard [Girard]. A coherence space is a structure E = (|E|,¨E)
where |E| is a set (which can be assumed to be at most countable, it is called
the web of E) and ¨E is a binary symmetric and reflexive relation on |E| which
express when two elements of |E| can be put together to form a “piece of data”
of E: these pieces of data are the cliques of E and one interprets LL in this

1Of which many excellent presentations can be found in the litterature, startingof course
with [Girard].
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model, a formula A is interpreted as a coherence space E and a proof-net p such
that ⊢ p : A as a clique of E. This semantics has not the same “degeneracy” as
Rel because the coherence space E⊥ interpreting A⊥ has the same web as E,
but a ¨E⊥ a′ if a = a′ or ¬(a ¨E a′); this model provides us with non trivial
information about proof interpretations. For instance, in coherence spaces, the
only cliques of 1⊕ 1 are {(1, ∗)}, {(2, ∗)} and ∅ which are the two usual boolean
values and the undefined one.

Intuitively Rel is like the coherence space model, just forgetting the co-
herence relation and interpreting any type as the web of its interpretation in
coherence spaces. Unfortunately the picture is not that simple because the web
of the coherence space !E interpreting !A (when E is the coherence space inter-
pretaing A) has the set of finite cliques2 of E as web and not the set of finite
multisets of elements of |E|. As shown in [BucciarelliEhrhard] this issue can
be solved and one can design a non uniform coherence space model of LL which
has the following properties which relate it strongly to the Rel model:

• any type A is interpreted by a non uniform coherence E such that |E| is
exactly the interpretation of A in Rel

• and the interpretation in this model of a proof-net p such that ⊢ p : A is
a clique of E which, as a subset of |E|, coincides with the interpretation
of p in Rel.

So the only job of this model is to sort out, among all subsets of the inter-
pretation of A in Rel, some particularly well behaved ones among which the
interpretation of proofs of A appear. We present now this model.

3.3 Enriching the relational model with a (non-
uniform) coherence structure

A (non-uniform) coherence space3 is a structure

E = (|E|,˝E ,ˇE)
where |E| is a set (which can be assumed to be at most countable) and ˝E
and ˇE are disjoint binary, symmetric and antireflexive relations on |E| called
strict coherence and strict incoherence respectively. The binary relation νE on
|E| which is the complementary set of ˝E ∪ˇE is called neutrality, it is clearly
symmetric, but usually, it is neither reflexive nor anti-reflexive4.

We use the following notations: ¨E = ˝E ∪ νE (large coherence) and ˚E =
ˇE ∪ νE (large incoherence) which are symmetric relations on |E|. Notice that

2Or finite multi-cliques which are multisets whose supports are cliques, as observed first
by Van de Wiel and then by Lafont [Lfont]; indeed one obtains in that way a nice example
of the concept of Lafont category of Section ??.

3We drop the “non-uniform” in the sequel.
4This uncoupling of equality and coherence on |E| is the main feature of these non-uniform

coherence spaces.
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a coherence space can be specified by providing any pair of relations among the
7 following ones, satisfying the folowing conditions:

• ˝E and ˇE such that ˝E ∩ˇE = ∅;

• ¨E and ˝E , two symmetric relations such that ˝E ⊆ ¨E and then ˇE =
|E|2 \¨E ;

• ¨E and νE with νE ⊆ ¨E and then ˝E = ¨E \ νE and ˇE = |E|2 \¨E ;

• ˝E and νE with ˝E ∩ νE = ∅ and then ˇE = |E|2 \ (˝E ∪ νE)
• and the duals of the 3 last pairs (replacing coherence with incoherence).

A clique of E is a subset u of |E| such that ∀a, a′ ∈ u a ¨E a′ and we
use Cl(E) for the set of cliques of E. The coherence space E⊥ is defined by
|E⊥| = |E|, ˝E⊥ = ˇE and ˇE⊥ = ˝E so that obviously E⊥⊥ = E. Notice
however that it is no more true that, given u ∈ Cl(E) and u′ ∈ Cl(E⊥), the set
u ∩ u′ has at most one element as in usual coherence spaces; all we can say a
priori is that ∀a, a′ ∈ u ∩ u′ a νE a′.

Given coherence spaces E1 and E2, one first defines E1⊗E2 by |E1 ⊗ E2| =
|E1| × |E2|, (a1, a2) ¨E1⊗E2

(a′1, a
′
2) if ai ¨Ei

a′i for i = 1, 2 and (a1, a2) νE1⊗E2

(a′1, a
′
2) if ai νEi

a′i for i = 1, 2.
Then one sets E ⊸ F = (E ⊗ F⊥)⊥. In other words, |E ⊸ F | = |E| × |F |

and:

• (a, b) ¨E⊸F (a′, b′) if a ¨E a′ ⇒ b ¨F b′ and a ˝E a′ ⇒ b ˝F b′,
• and (a, b) νE⊸F (a′, b′) if a νE a′ and b νF b′,

Notice that (a, b) ¨E⊸F (a′, b′) is equivalent to b νF b′ ⇒ a ¨E a′ and b ˇF
b′ ⇒ a ˇF a′, a characterization of ¨E⊸F which will be quite useful when
dealing with Boudes’ exponential.

The category NCoh has coherence spaces as objects, and NCoh(E,F ) =
Cl(E ⊸ F ). Obviously, the diagonal IdE ⊆ |E|2 belongs to NCoh(E,E), it is
the identity morphism (defined as in Rel). Also if R ∈ NCoh(E,F ) and S ∈
NCoh(F,G), the relational composition S R is easily seen to be in NCoh(E,G):
this is the notion of composition we use to define the category NCoh.

This category is easily seen to be symmetric monoidal (with the operation
⊗ defined above on objects, its extension to morphisms being defined as in Rel,
the structural isos of SMC being also defined as in Rel). The “neutral object” is
1 = ({∗}, ∅, ∅) (in other words ∗ ν1 ∗). This SMC NCoh is closed with E ⊸ F
as object of morphisms from E to F (and linear evaluation morphism ev, as
well as linear curryfication, defined as in Rel). It is also *-autonomous with
dualizing object ⊥ = 1, the dual of E being E⊥ (up to trivial iso).

Next, NCoh is easily seen to be cartesian, with terminal object ⊤ = (∅, ∅, ∅)
and cartesian product of E1 and E2 the coherence space E1 & E2 defined by
|E1 & E2| = {1} × |E1| ∪ {2} × |E2| and

• (i, a) νE1&E2
(j, b) if i = j and a νEi

b
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• and (i, a) ¨E1&E2 (j, b) if i = j ⇒ a νEi b.

The projection morphisms are defined as in Rel and so is the pairing of two
morphisms in NCoh(F,Ei) for i = 1, 2.

Concerning the exponential, several definitions are possible, satisfying the
requisit that |!E| =Mfin(|E|) = !|E| (this latter exponential being taken that
of Rel.

3.3.1 Boudes’ exponential

The one we want to mention first is the free exponential of NCoh (it has been
discovered after the second one actually, by Pierre Boudes [Boudes], for that
reason we denote it as !bE). As already mentioned !bE = Mfin(|E|). Given
m,m′ ∈Mfin(|E|):

• m ν!bE m′ if m = [a1, . . . , an] and m′ = [a′1, . . . , a
′
n] with ∀i ai νE a′i and

∀i, j ai ¨E a′j

• and m ˇ!bE m′ if ∃a ∈ m, a′ ∈ m′ a ˇE a′

where “a ∈ m” means m(a) > 0.
Given R ∈ NCoh(E,F ), we prove that !bR, which is defined exactly as !R,

satisfies !bR ∈ NCoh(!bE, !bF ). So let (mi, pi) ∈ !bR for i = 1, 2, that is: mi =
[ai1, . . . , a

i
ni ] and pi = [bi1, . . . , b

i
ni ] with (aij , b

i
j) ∈ R for i = 1, 2 and j = 1, . . . , ni.

Assume first that p1 ˇ!bF p2 so that we can find ji ∈ {1, . . . , ni} for i = 1, 2
such that b1j1 ˇF b2j2 so that a1j1 ˇE a2j2 because (a1j1 , b

1
j1) ¨E⊸F (a2j2 , b

2
j2) since

R ∈ Cl(E ⊸ F ), this proves that m1 ˇ!bE m2. Assume next that p1 ν!bF p
2, we

contend that m1 ˚!bE m2. We can assume that n1 = n2 = n, that b1j νF b2j for
j = 1, . . . , n, and we know that b1j1 ¨F b2j2 for all j1, j2 ∈ {1, . . . , n}. Therefore
we have a1j ˚E a2j for j = 1, . . . , n (because R ∈ Cl(E ⊸ F )). If for some
j1, j2 ∈ {1, . . . , n} we have a1j1 ˇE a2j2 then m1 ˇ!bE m2 and our contention
holds so assume this is not the case, meaning that ∀j1, j2 ∈ {1, . . . , n} a1j1 ¨E
a2j2 . In particular we have ∀j ∈ {1, . . . , n} a1j νE a2j and hence m1 ν!bE m2,
proving our contention.

So we have proven that !b_ is a functor NCoh → NCoh, its action on
morphisms being defined exactly as in Rel. Now we prove that the comonad
structure of !_ on Rel is actually a structure of comonad for !b_ on NCoh. One
has first to check that dE = d|E| = {([a], a) | a ∈ |E|} belongs to NCoh(!E,E)
which results from the straightforward observation that

∀a, a′ ∈ |E| [a] ˇ!bE [a′]⇔ a ˇE a′ and [a] ν!bE [a′]⇔ a νE a′ .

Next we have to check that pE = p|E| = {(m1 + · · · + mn, [m1, . . . ,mn]) |
m1, . . . ,mn ∈ Mfin(|E|)} belongs to NCoh(!bE, !b!bE). So let (mi,M i) ∈ pE
for i = 1, 2 so that M i = [mi

1, . . . ,m
i
ni ] and mi =

∑ni

j=1m
i
j for i = 1, 2. Assume

first that M1 ˇ!b!bE M2. So let ji ∈ {1, . . . , ni} for i = 1, 2 be such that
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m1
j1 ˇ!bE m2

j2 . We can find ai ∈ mi
ji for i = 1, 2 such that a1 ˇE a2. Since

ai ∈ mi for i = 1, 2, we have m1 ˇ!bE m2 as required. Assume now that
M1 ν!b!bE M2 and let us prove that m1 ˚!bE m2. We have n1 = n2 = n and, up
to reindexing, we can assume that m1

j ν!bE m2
j for j = 1, . . . , n. So we can write

mi
j = [aij,1, . . . , a

i
j,kj

] with a1j,l νE a2j,l for all j = 1, . . . , n and l = 1, . . . , kj (kj
does not depend on i). If for all (j1, l1) and (j2, l2) we have a1j1,l1 ¨E a2j2,l2 and
hence we have m1 ν!bE m2 and therefore m1 ˚!bE m2 as contended (because
mi = [aij,l | j ∈ {1, . . . n} and l ∈ {1, . . . , kj}]). So assume that for some (j1, l1)

and (j2, l2) we have a1j1,l1 ˇE a2j2,l2 . It follows that m1
j1 ˇ!bE m2

j2 and hence
M1 ˇ!b!bE M2, contradicting our assumption.

To end the proof that NCoh is a model of LL, it suffices to prove that the
Seely isomorphisms of Section 3.2 are actually morphisms of NCoh. This is
obvious for m0, so we are left with proving that given coherence spaces E1 and
E2, the relation m2

|E1|,|E2| (that we denote as m2
E1,E2

) belongs to NCoh(!bE1⊗
!bE2, !b(E1 & E2)). Given m = [a1, . . . , an] ∈ |!bEi| = Mfin(|Ei|), let i · m =
[(i, a1), . . . , (i, an)] ∈ |!b(E1 & E2)|. Remember that

m2
E1,E2

= {((m1,m2), 1 ·m1 + 2 ·m2) | mj ∈ |!bEj | for j = 1, 2} .

Let ((mi
1,m

i
2),m

i) ∈ m2
E1,E2

for i = 1, 2 (so that mi = 1 ·mi
1 +2 ·mi

2). Assume
first that m1 ˇ!b(E1&E2) m

2. Due to the definition of E1 & E2, there must be
ai ∈ mi

j for i = 1, 2 such that a1 ˇEj
a2, for j = 1 or for j = 2; wlog. assume that

j = 1. Then we have m1
1 ˇ!bE1

m2
1 and hence (m1

1,m
1
2) ˇ!bE1⊗!bE2

(m2
1,m

2
2) as

required. Assume next that m1 ν!b(E1&E2) m
2 so that m1

j ν!bEj m
2
j for j = 1, 2,

as easily checked. It follows that (m1
1,m

1
2) ν!bE1⊗!bE2 (m2

1,m
2
2) which ends the

proof that m2
E1,E2

∈ NCoh(!bE1 ⊗ !bE2, !b(E1 & E2)).
We also need to prove that (m2

|E1|,|E1|)
−1 ∈ NCoh(!b(E1 & E2), !bE1⊗ !bE2)

where (m2
|E1|,|E1|)

−1 is of course {(1 ·m1+2 ·m2, (m1,m2)) | mj ∈ |!bEj | for j =
1, 2}. So, with the same notations as above, assume that (m1

1,m
1
2) ˇ!bE1⊗!bE2

(m2
1,m

2
2). Wlog. we can assume that m1

1 ˇ!bE1
m2

1 which clearly implies
m1 ˇ!b(E1&E2) m

2. Assume next that (m1
1,m

1
2) ν!bE1⊗!bE2

(m2
1,m

2
2), that is

m1
j ν!bUj m

2
j for j = 1, 2. It follows clearly that m1 ν!b(E1&E2) m

2.
Let us say that a coherence space E is a Boudes’ space if a νE a ⇒ a = a′.

Observe that Boudes’ condition is preserved by all coherence space constructions
introduced so far. One benefit of this condition is that a clique and an anti-clique
of a Boudes’ space have at most one element in common (a basic feature of usual
coherence spaces). Moreover, the following is a straightforward observation.

Proposition 3.3.1. If E is a Boudes’ space then so are E⊥ and !E. If E1 and
E2 are Boudes’ spaces then so are E1 ⊗ E2 and E1 & E2. In other words, the
full subcategory NCohB of NCoh whose objects are Boudes’ spaces, equipped
with Boudes’ exponential !b_, is a model of LL.

It must also be noticed that Boudes’ exponential is the free one, that is
(NCoh, !b_) (and probably also (NCohB, !b_)) is a Lafont model of LL; it has
been discovered when looking for such a free exponential in NCoh).
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3.3.2 Another exponential
However the first exponential we discovered in NCoh seems quite different
from Boudes’ exponential and in some sense less intuitive. For instance it does
not preserve the property of being a Boudes’ space which looks like a rather
natural one. We describe it shortly for the curious reader, denoting it as !be_
for “Bucciarelli-Ehrhard exponential”.

We set of course |!beE| = Mfin(|E|). Given m = [a1, . . . , ak] and m′ =
[ak+1, . . . , an] in |Mfin(|E|)|:

• m ¨!beE m′ if ∀i, j i ̸= j ⇒ ai ¨E aj (we say that m+m′ is a multiclique)

• m ˝!beE m′ if m ¨!beE m′ and, moreover, ∃i ∀j ̸= i ai ˝E aj (we say that
m+m′ is a star-shaped multiclique and i is one of its centers).

It is important to observe that there is no condition on the coherence of ai with
itself, for a given i, only coherence conditions relative to points with distinct
indices.

Notice that these definitions do not depend on the chosen enumerations of
the multisets m and m′, only on the multisets themselves. Observe also that
m ν!beE m′ simply means that m+m′ is a multiclique which is not star-shaped,
a condition much more liberal than Boudes’. For instance it does not imply at
all that m and m′ have the same number of elements as Boudes’ does.

It is worthwile to check that the definition above, though admittedly a bit
strange, leads to a perfectly regular exponential compatible with that of Rel.
Let R ∈ NCoh(E,F ) and let (m, p), (m′, p′) ∈ !R (hence m = [a1, . . . , ak] and
m′ = [ak+1, . . . , an], p = [b1, . . . , bk] and p′ = [bk+1, . . . , bn], with (ai, bi) ∈ R for
each i = 1, . . . , n). Assume first that m ¨!beE m′, that is, m+m′ is a multiclique
(that is i ̸= j ⇒ ai ¨E aj). Since ∀i, j (ai, bi) ¨E⊸F (aj , bj), it follows that
p+ p′ is a multiclique. For the same reason, if m+m′ is star-shaped with i as
center, so is p + p′ and hence m ˝!beE m′ ⇒ p ˝!beE p′. So !be_ is a functor
NCoh→ NCoh.

The fact the dE = d|E| ∈ NCoh(!beE,E) results again from the easy obser-
vation that

∀a, a′ ∈ |E| [a] ¨!beE [a′]⇔ a ¨E a′ and [a] ˝!beE [a′]⇔ a ˝E a′ .

We prove now that pE = p|E| ∈ NCoh(!beE, !be!beE). So let (m,M), (m′,M ′) ∈
pE so that M = [m1, . . . ,mk] with m =

∑n
i=1mi and M ′ = [mk+1, . . . ,mn]

with m′ =
∑n
i=k+1mi. Assume first that m ¨!beE m′, that is, m + m′ is a

multiclique. We must prove that M +M ′ = [mi | i = 1, . . . , n] is a multiclique,
that is ∀i < j mi ¨!beE mj . But if 1 ≤ i < j ≤ n then mi +mj is obviously a
multiclique since mi +mj ≤ m +m′ and m +m′ =

∑n
l=1ml is assumed to be

a multiclique. Assume moreover that m +m′ is star-shaped. Remember that
m +m′ = m1 + · · · +mn. We can write m +m′ = [a1, . . . , aN ] and wlog. we
can assume that ∀i > 1 a1 ˝E ai. Then a1 appears in one of the mj ’s, let
us say in m1 for the sake of readbility. Then for j > 1, m1 + mj is a star-
shaped multiclique and hence m1 ˝!beE mj , showing that M +M ′ itself is a
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star-shaped multclique. It follows that M ˝!be!beE M ′ as expected. This shows
that (!be_, d, p) is a comonad on NCoh, it remains to exhibit its Seely structure
which of course must be that of !_ in Rel.

We check that m2
|E1|,|E2| ∈ NCoh(!bE1 ⊗ !bE2, !b(E1 & E2)) (and a similar

statement for the inverse of this iso in Rel). Let ((m1,m2),m), ((m′
1,m

′
2),m

′) ∈
m2

|E1|,|E2| and assume first that

(m1,m2) ¨!beE1⊗!beE2 (m′
1,m

′
2) ,

meaning that mi +m′
i is a multiclique in Ei, for i = 1, 2. Let us write mi =

[ai1, . . . , a
i
ki ], m

′
i = [aiki+1, . . . , a

i
ni ] for i = 1, 2. Remember thatm = 1·m1+2·m2

and similarly for m′. Then

m+m′ = 1 · (m1 +m′
1) + 2 · (m2 +m′

2)

= [(1, a11), . . . , (1, a
1
n1), (2, a21), . . . , (2, a

2
n2)] .

For l ∈ {1, n1 + n2} let us set bl = (1, a1l ) if 1 ≤ l ≤ n1 and bl = (2, a2l−n1) if
n1 + 1 ≤ l ≤ n2 so that m +m′ = [b1, . . . , bn1+n2 ]. It is clear that m +m′ a
multiclique because the mi +m′

i’s are and by definition of E1 & E2. Assume
moreover that (m1,m2) ˝!bE1⊗!bE2

(m′
1,m

′
2). Wlog. assume that m1 ˝!beE1

m′
1,

that is, m1 +m′
1 is star-shaped with center, let’s say, l ∈ {1, . . . , k1}. Then we

have bl ˝E1&E2
bl′ for l′ ∈ {1, . . . , n1} because m1 + m′

1 is star-shaped, and
bl ˝E1&E2 bl′ for l′ ∈ {n1 + 1, . . . , n1 + n2} by definition of E1 & E2.

To check that the inverse of m2
|E1|,|E2| is a clique, we use the same notations

and we assume first that m ¨!be(E1&E2) m
′, that is m +m′ is a clique in E1 &

E2 which implies that mi + m′
i is a multiclique in Ei for i = 1, 2 and hence

(m1,m2) ¨!bE1⊗!bE2 (m′
1,m

′
2). Assume moreover that m + m′ is star-shaped

with l ∈ {1, . . . , n1 + n2} as center. By symmetry we can assume that l ∈
{1, . . . , k1}. Thenm1+m

′
1 is star-shaped and hencem1 ˝!beE1

m′
1, which implies

that (m1,m2) ˝!bE1⊗!bE2
(m′

1,m
′
2), ending the proof that NCoh, equipped with

the !be_ exponential, is a model of LL.

3.3.2.1 Example

We develop a simple example to illustrate the difference between the two expo-
nentials. We have |!b1| = |!be1| = N and:

• Not surprisingly n ν!b1 n
′ iff n = n′ and n ˝!b1 n

′ iff n ̸= n′.

• Much more surprising is !be1: n ν!be1 n
′ iff n + n′ ̸= 1 and n ˝!b1 n

′ iff
n+ n′ = 1.

Indeed in NCoh the object 1 is characterized by |1| = {∗} with ∗ ν1 ∗ and
˝1 is empty. Therefore any [∗, . . . , ∗] is a multiclique, but the only star-shaped
multiclique if [∗]. Of course !be1 is far from being a Boudes’ space.

It follows that if n, n′ ∈ N:
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• {((n, ∗), (1, ∗)), ((n′, ∗), (2, ∗))} ∈ Cl((!b1⊸ 1)⊸ 1⊕ 1) as soon as n ̸= n′,
meaning that the !b_ based model is able to separate programs which differ
by the number of use of their arguments in a very general way

• and {((n, ∗), (1, ∗)), ((n′, ∗), (2, ∗))} ∈ Cl((!be1⊸ 1)⊸ 1⊕ 1) iff n+n′ = 1
meaning that the !be_ based model seems to have a much more limited
separation power: it can only separate a constant function from a function
which uses its argument exactly once!

Another interesting observation is that [(1, ∗), (2, ∗)] ˇ!b(1⊕1) [(1, ∗), (2, ∗)]
(this is also true in !be(1⊕ 1)) and therefore

{([(1, ∗), (2, ∗)], (1, ∗)), ([(1, ∗), (2, ∗)], (2, ∗))} ∈ NCoh(!b(1⊕ 1), 1⊕ 1)

3.4 Lamarche’s strict coherence spaces
Another intersting model of LL based on the relational model has been intro-
duced by François Lamarche in [Lamarche-strict-coh], and actually also arise
as instances of the models generated by Index LL. We think useful to present
them here because they feature at the same time a non trivial notion of coher-
ence — in the sense that in 1 ⊕ 1, the two elements of the web do not form a
clique — and that they seem closer to the Scott semantics of the λ-calculus in
cpo’s (which are not neecssarily lattices) that to the stable samantics.

Another interesting feature of this model is that it can be considered as a
refinement of Rel by binary logical relations.

Definition 3.4.1. A strict coherence space is a pair E = (|E|,˝E) where |E|
(the web of E) is a set and ˝E is a binary and symmetric relation on |E|.

Definition 3.4.2. Given a SCS E, we define an SCS P(E) by |P(E)| = P(|E|)
and x1 ˝P(E) x2 if ∀(a1, a2) ∈ x1 × x2 a1 ˝E a2. An element x ∈ P(|E|) such
that x ˝P(E) x is a clique of E, we use Cl(E) for the set of cliques of E.

Lemma 3.4.3. The set Cl(E), ordered by inclusion, is a cpo whose least element
is ∅.

This is obvious. Observe that, as in NUCS, we do not always have {a} ∈
Cl(E) when a ∈ |E|.

Definition 3.4.4. The SCS E ⊸ F is defined by |E ⊸ F | = |E| × |F | and
(a, b) ˝E⊸F (a′, b′) if a ˝E a′ ⇒ b ˝F b′. The category Scs has the SCS as
objects, and Scs(E,F ) = Cl(E ⊸ F ), composition and identities being defined
as in Rel.

Indeed it is is clear that if s ∈ Scs(E,F ) and t ∈ Scs(F,G) then t s ∈
Scs(E,G) and that IdE = {(a, a) | a ∈ |E|} belongs to Scs(E,E).

Lemma 3.4.5. Let (si ∈ |P(E ⊸ F )|)i=1,2, one has s1 ˝P(E⊸F ) s2 iff ∀x1, x2 ∈
|P(E)| x1 ˝P(E) x2 ⇒ s1 · x1 ˝F s2 · x2.



3.4. LAMARCHE’S STRICT COHERENCE SPACES 121

This proposition shows that the relation ˝P(E) can be understood as a logical
relation. Accordingly, a morphism E → F is an s ∈ |P(E ⊸ F )| such that
s ˝P(E⊸F ) s.

This category is an SMCC, we define E ⊗ F by |E ⊗ F | = |E| × |F | and
(a1, b1) ˝E⊗F (a2, b2) if a1 ˝E a2 and b1 ˝F b2. Given s ∈ Scs(E1, E2) and
t ∈ Scs(F1, F2) then s ⊗ t is defined as in Rel and it is easy to check that
s ⊗ t ∈ Scs(E1 ⊗ F1, E2 ⊗ F2). It is also trivial to check that the natural
isomorphisms λ, ρ, α, σ are morphisms in Scs, for instance

α|E1|,|E2|,|E3| ∈ Scs((E1 ⊗ E2)⊗ E3, E1 ⊗ (E2 ⊗ E3))

and in that way we have equipped Scs with a structure of SMC.
This SMC is closed, with (E ⊸ F, ev) as internal hom, the evaluation mor-

phism ev ∈ Scs((E ⊸ F ) ⊗ E,F ) is defined as in Rel, and similarly for the
Curry transpose curs ∈ Scs(G,E ⊸ F ) when s ∈ Scs(G ⊗ E,F ). The unit of
the tensor product is 1 = ({∗},˝1) with ∗ ˝1 ∗.

The category Scs is ∗-autonomous with dualizing object ⊥ with |⊥| = {∗}
and ∗ ˇ⊥ ∗. It is easy to check that E ⊸ ⊥ is isomorphic to the SCS E⊥ with
|E⊥| = |E| and a ˝E⊥ a′ if a ˇE a′.
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Chapter 4

Categorical models of linear
logic

We refer to Appendix C for the basic definitions and results of category theory
that we rely upon.

4.1 Seely categories
We define now the basic notion of categorical model of Linear Logic. A Seely
category is a tuple

(L, 1,⊗, λ, ρ, α, σ,⊥, !, d, p,m0,m2)

where L is a category and the additional components will be explained now.

4.1.1 The multiplicative structure
First we require that 1 ∈ Obj(L), ⊗ : L2 → L is a functor and λ, ρ, α and σ are
natural transformations which turn L into a symmetric monoidal category, see
Section ??.

Next we require this SMC to be closed. This means that for any two objects
X and Y of L, there is a pair (X ⊸ Y, ev) where X ⊸ Y is an object of L and
ev ∈ L((X ⊸ Y ) ⊗ X,Y ), and this pair has the following universal property:
for any object Z of L and any f ∈ L(Z ⊗X,Y ) there is exactly one morphism
curf ∈ L(Z,X ⊸ Y ) such that the following diagram commutes

Z ⊗X (X ⊸ Y )⊗X

Y

curf⊗X

f
ev

In other terms (X ⊸ Y, ev) is the terminal object in the category E(X,Y )
whose objects are the pairs (Z, f) where Z ∈ Obj(L) and f ∈ L(Z ⊗ X,Y )

123
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and an element of E((Z, f), (Z ′, f ′)) is a g ∈ L(Z,Z ′) such that the following
diagram commutes

Z ⊗X Z ′ ⊗X

Y

g⊗X

f
f ′

and composition in E(X,Y ) is defined as in L.
Another way of expressing the same property is to say that, for any object

X of L, the functor _⊗X : L → L has a right adjoint X ⊸ _ : L → L.
Last, this universal property is equivalent to the satisfaction of the following

three equations:

• if f ∈ L(Z ⊗X,Y ), one has ev (curf ⊗X) = f ;

• if moreover g ∈ L(Z ′, Z), one has (curf) g = cur(f (g ⊗X))

• and last cur ev = IdX⊸Y .

It is then possible to turn _ ⊸ _ into a functor Lop × L → L. Of course
this functor maps (X,Y ) to X ⊸ Y . Let now f ∈ L(X ′, X) and g ∈ L(Y, Y ′).
We define f ⊸ g as the unique element of L(X ⊸ Y,X ′ ⊸ Y ′) such that the
following diagram commutes

(X ⊸ Y )⊗X ′ (X ′⊸ Y ′)⊗X ′

(X ⊸ Y )⊗X Y Y ′

(f⊸g)⊗X′

(X⊸Y )⊗f ev

ev g

This means that
f ⊸ g = cur(g ev ((X ⊸ Y )⊗ f)) .

Functoriality results from the universal property. For instance, if f ′ ∈ L(X ′′, X ′)
and g′ ∈ L(Y ′, Y ′′), both elements h of {(f f ′) ⊸ (g′ g), (f ′ ⊸ g′) (f ⊸ g)}
make the following diagram commutative

(X ⊸ Y )⊗X ′′ (X ′′⊸ Y ′′)⊗X ′′

(X ⊸ Y )⊗X Y Y ′

h⊗X′′

(X⊸Y )⊗(f ′ f) ev

ev g′ g

by functoriality of ⊗ and hence they are equal.

Theorem 4.1.1. The functor ⊗ commutes with all colimits existing in L and
for each object X of L the functor X ⊸ _ commutes with all existing limits.

Indeed for each object X the functor _ ⊗ X is left adjoint to the functor
X ⊸ _.
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4.1.1.1 ∗-autonomy

Let Z be an object of L. For any object X, we have a morphism

η
(Z)
X ∈ L(X, (X ⊸ Z)⊸ Z)

defined as cur(φ) where φ is the following composition of morphisms

X ⊗ (X ⊸ Z) (X ⊸ Z)⊗X Zσ ev

This morphism defines a natural transformation from the identity functor to
the functor (_⊸ Z)⊸ Z.

Lemma 4.1.2. The following composition of morphisms

X ⊸ Z ((X ⊸ Z)⊸ Z)⊸ Z X ⊸ Z
η
(Z)
X⊸Z η

(Z)
X ⊸Z

coincides with the identity at X ⊸ Z.

Proof. We have

(η
(Z)
X ⊸ Z) η

(Z)
X⊸Z = cur(ev (Id⊗ η(Z)

X )) η
(Z)
X⊸Z

= cur(ev(η
(Z)
X⊸Z ⊗ η

(Z)
X ))

= cur(ev (η
(Z)
X⊸Z ⊗ Id) (Id⊗ η(Z)

X ))

= cur(ev σ (Id⊗ η(Z)
X ))

= cur(ev (η
(Z)
X ⊗ Id)σ)

= cur(ev σ σ) = Id .

Definition 4.1.3. An object Z of L is a dualizing object if the morphism
η
(Z)
X is an iso for each object X of L. A ∗-autonomous category is a tuple
(L, 1,⊗, λ, ρ, α, σ,⊥) where (L, 1,⊗, λ, ρ, α, σ) is an SMCC and ⊥ ∈ Obj(L) is a
dualizing object.

In the definition of a Seely category, the structure (L, 1,⊗, λ, ρ, α, σ,⊥) is
assumed to be a ∗-autonomous category. We use then the notation _⊥ for the
functor _⊸ ⊥ : Lop → L. We set ηX = η

(⊥)
X so that for each object X of L,

ηX ∈ L(X,X⊥⊥) is an iso which is natural in X.

Lemma 4.1.4. Let X be an object of L, we have η⊥X ηX⊥ = IdX⊥ .

This is just a special case of Lemma 4.1.2.

Remark 4.1.5. We could call intuitionistic Seely category a structure defined
exactly as a Seely category, without the data of a dualizing object ⊥.
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4.1.2 The additive structure
A Seely category is also assumed to be cartesian, and more precisely to be
equipped with a choice of terminal object ⊤ and cartesian product (X1 &
X2, pr1, pr2). In most known models countable cartesian products are also avail-
able and we denote them as

( &
i∈I

Xi, (pri)i∈I) .

Remember that this means that, for any family (fi)i∈I of morphisms fi ∈
L(Y,Xi) there is exactly one morphism

f ∈ L(Y, &
i∈I

Xi)

such that pri f = fi for each i ∈ I. We set f = ⟨fi⟩i∈I .

Theorem 4.1.6. If a ∗-autonomous category (L, 1,⊗, λ, ρ, α, σ,⊥) is (count-
ably) cartesian, it is also (countably) cocartesian.

Of course a similar statement holds for all kinds of limits and colimits: if
L has equalizers, it also has coequalizers etc. The proof is straightforawrd.
Let (Xi)i∈I be a family of objects (finite, or countable in the case where L is
countably cartesian). Then

(⊕
i∈I

Xi, (ini)i∈I) = (( &
i∈I

X⊥
i )

⊥, (pr⊥i ηXi
)i∈I)

is the coproduct of the Xi’s; notice indeed that inj = pr⊥j ηXj
∈ L(Xj ,⊕i∈I Xi).

To check this fact, let (fi)i∈I be a family of morphisms with fi ∈ L(Xi, Y ).
Then we have f⊥i ∈ L(Y ⊥, Y ⊥

i ) and hence ⟨f⊥i ⟩i∈I ∈ L(Y ⊥,&i∈I X
⊥
i ). There-

fore we set

[fi]i∈I = ηY
−1 ⟨f⊥i ⟩⊥i∈I ∈ L(⊕

i∈I
Xi, Y ) .

Given j ∈ I, we have

[fi]i∈I inj = ηY
−1 ⟨f⊥i ⟩⊥i∈I pr⊥j ηXj

= ηY
−1 (prj ⟨f⊥i ⟩i∈I)⊥ ηXj

= ηY
−1 f⊥⊥

j ηXj

= fj

by naturality of η. Notice that for all i ∈ I we have

in⊥i = η⊥Xi
pr⊥⊥
i

= ηX⊥
i

−1 pr⊥⊥
i by Lemma 4.1.4

= pri (η&i∈I X
⊥
i
)
−1 by naturality of η−1
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Last let f ∈ L(⊕i∈I Xi, Y ) be such that f ini = fi for each i ∈ I. Let j ∈ I,
we have

prj (η&i∈I X
⊥
i
)
−1
f⊥ = in⊥j f⊥

= (f inj)
⊥

= f⊥j .

It follows that (η&i∈I X
⊥
i
)
−1
f⊥ = ⟨f⊥j ⟩j∈I . Hence f⊥ = η&i∈I X

⊥
i
⟨f⊥j ⟩j∈I ,

therefore f⊥⊥ = ⟨f⊥j ⟩⊥j∈I η⊥&i∈I X
⊥
i

. By Lemma 4.1.4 we have f⊥⊥ η(&i∈I X
⊥
i )⊥ =

⟨f⊥j ⟩⊥j∈I . By naturality of η it follows that ηY f = ⟨f⊥j ⟩⊥j∈I and hence f =

ηY
−1 ⟨f⊥j ⟩⊥j∈I = [fi]i∈I . Therefore (⊕i∈I Xi, (ini)i∈I) is the coproduct of the

Xi’s in L.

4.1.3 The exponential structure
Let L be a cartesian monoidal category with the same notations as above. An
exponential structure on L is a tuple

(!_, dX , pX ,m
0,m2

X,Y )

where (!_, dX , pX) is a comonad on L, meaning that !_ : L → L is a functor and
dX ∈ L(!X,X) and pX ∈ L(!X, !!X) are natural transformations which satisfy

!X !!X

!X

pX

X
d!X

!X !!X

!X

pX

X
!dX

!X !!X

!!X !!!X

pX

pX !pX

p!X

The two last morphisms are the Seely isomorphisms: m0 ∈ L(1, !⊤) is an isomor-
phism and m2

X1,X2
∈ L(!X1⊗ !X2, !(X1 & X2)) is a natural isomorphism. Tech-

nically, these isomorphisms equip the comonad !_ with a symmetric monoidality
structure from the SMC (L,&,⊤) to the SMC (L,⊗, 1). More explicitly this
means that the following diagrams commute. The first one expresses compati-
bility with the associators of the two SMC’s:

(!X1 ⊗ !X2)⊗ !X3 !X1 ⊗ (!X2 ⊗ !X3)

!(X1 & X2)⊗ !X3 !X1 ⊗ !(X2 & X3)

!((X1 & X2) & X3) !(X1 & (X2 & X3))

m2
X1,X2

⊗!X3

α!X1,!X2,!X3

!X1⊗m2
X2,X3

m2
X1&X2,X3

m2
X1,X2&X3

⟨pr1 pr1,⟨pr2 pr1,pr2⟩⟩

The second one deals with the commutators:

!X1 ⊗ !X2 !X2 ⊗ !X1

!(X1 & X2) !(X2 & X1)

σ!X1,!X2

m2
X1,X2

m2
X2,X1

!⟨pr2,pr1⟩
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And the last one deals with the neutrality isos:

!X ⊗ 1 !X

!X ⊗ !⊤ !(X & ⊤)

ρX

!X⊗m0 !⟨X,tX⟩
m2

X,⊤

1⊗ !X !X

!⊤⊗ !X !(⊤ & X)

λX

m0⊗!X !⟨tX ,X⟩
m2

⊤,X

The compatibility of this symmetric monoidal structure with the comonad struc-
ture of !_ is expressed by the following diagram

!X1 ⊗ !X2 !(X1 & X2)

!!(X1 & X2)

!!X1 ⊗ !!X2 !(!X1 & !X2)

m2
X1,X2

pX1
⊗pX2

pX1&X2

!⟨!pr1,!pr2⟩
m2

!X1,!X2

(4.1)

Definition 4.1.7. A Seely category is a cartesian ∗-autonomous category equipped
with an exponential structure.

4.1.4 Derived structures in a Seely category

4.1.4.1 Promotion and the lax tensorial monoidality of the exponen-
tial

Given f ∈ L(!X,Y ), we can define f ! ∈ L(!X, !Y ) by f ! = !f pX . This is the
unary promotion of f .

Given more generally f ∈ L(!X1 ⊗ · · · ⊗ !Xn, Y ) we want now to define an
n-ary promotion f ! ∈ L(!X1 ⊗ · · · ⊗ !Xn, !Y ) in order to interpret the rule (!R).

For this we define µ0 ∈ L(1, !1) and µ2
X1,X2

∈ L(!X1⊗ !X2, !(X1 ⊗X2)). The
first of these morphisms is defined as the following composition of morphisms
in L

1 !⊤ !!⊤ !1m0 p⊤ !(m0)
−1

.

and the second one is defined as follows:

!X1 ⊗ !X2 !!X1 ⊗ !!X2 !(!X1 & !X2) !(X1 & X2)
pX1

⊗pX2
m2

!X1,!X2
!(dX1

&dX2
)

It results straightforwardly from the definition that µ2
X1,X2

is natural in X1 and
X2. These two morphisms equip the functor ! with a lax1 symmetric monoidal
structure, from the monoidal category (L, 1,⊗) to itself. This means that the
following diagrams commute

1“lax” means that the associated natural transformations are not isos in general.
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1⊗ !X !1⊗ !X !(1⊗X)

!X

µ0⊗!X

λ!X

µ2
1,X

!λX

(!X1 ⊗ !X2)⊗ !X3 !(X1 ⊗X2)⊗ !X3 !((X1 ⊗X2)⊗X3)

!X1 ⊗ (!X2 ⊗ !X3) !X1 ⊗ !(X2 ⊗X3) !(X1 ⊗ (X2 ⊗X3))

µ2
X1,X2

⊗!X3

α!X1,!X2,!X3

µ2
X1⊗X2,X3

!αX1,X2,X3

!X1⊗µ2
X2,X3

µ2
X1,X2⊗X3

!X1 ⊗ !X2 !(X1 ⊗X2)

!X2 ⊗ !X1 !(X2 ⊗X1)

µ2
X1,X2

σ!X1,!X2 !σX1,X2

µ2
X2,X1

Exercise 4.1.8. Prove that the three diagrams above commute.

The compatibility of this lax monoidality with the comonad structure of ! is
expressed as follows.

Proposition 4.1.9. Let X1 and X2 be objects of L, the following diagrams
commutes

1 !1

1

µ0

d1

1 !1

!1 !!1

µ0

µ0 p1

!µ0

and

!X1 ⊗ !X2 !(X1 ⊗X2)

X1 ⊗X2

µ2
X1,X2

dX1
⊗dX2 dX1⊗X2

!X1 ⊗ !X2 !(X1 ⊗X2)

!!X1 ⊗ !!X2 !(!X1 ⊗ !X2) !!(X1 ⊗X2)

µ2
X1,X2

pX1
⊗pX2

pX1⊗X2

µ2
!X1,!X2

!µ2
X1,X2

Proof sketch. Direct application of the definitions of µ0 and µ2, and of our
assumptions on the Seely morphisms.

Exercise 4.1.10. Prove Proposition 4.1.9.

If we consider the isomorphisms α as identities (that is, if we identify the
objects (X ⊗ Y )⊗ Z and X ⊗ (Y ⊗ Z)), then it makes sense to write an n-ary
tensor as X1 ⊗ · · · ⊗ Xn, without parentheses. This is of course an abuse of
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notation which can be suitably corrected by inserting parentheses and explicit
isomorphisms. The property above of µ2 means precisely that, independently
of these choices of representations of n-ary tensors, we can define canonical
morphism

µn ∈ L(!X1 ⊗ · · · ⊗ !X1, !(X1 ⊗ · · · ⊗Xn))

by combining freely occurrences of µ2, the order in which we use them does
not matter thanks to the coherence diagrams commutations satisfied by the
monoidality isomorphisms associated with ⊗ (we can actually even insert 1’s
and permute factors).

Remark 4.1.11. These considerations can be made formal using the monoidal
trees of Appendix C.5. For instance, given a monoidal tree τ of degree n ∈ N,
we can define µτ ∈ L(T⊗

τ (!X1, . . . , !Xn), !T
⊗
τ (X1, . . . , Xn)) and then replace all

our lousy n-ary tensors X1⊗· · ·⊗Xn by well-defined applications of the T⊗
τ (_)

operator and parameterize all the generalized constructions we introduce by
monoidal trees τ . The lax monoidality diagrams make it then possible to prove
typically that if σ is another monoidal tree of degree n the following diagram
commutes

T⊗
σ (!X1, . . . , !Xn) !T⊗

σ (X1, . . . , Xn)

T⊗
τ (!X1, . . . , !Xn) !T⊗

τ (X1, . . . , Xn)

µσ

φ⊗
σ,τ (!X1,...,!Xn) !φ⊗

σ,τ (X1,...,Xn)

µτ

We prefer keep using n-ary tensor in order to make the presentation more read-
able, but the reader should be convinced that it can be made fully formal tnaks
to these monoidal trees.

Thanks to these morphisms, we can generalize promotion as follows.
Let f ∈ L(!X1 ⊗ · · · ⊗ !Xn, Y ), we define f ! ∈ L(!X1 ⊗ · · · ⊗ !Xn, !Y ) as the

following composition of morphisms in L

!X1 ⊗ · · · ⊗ !Xn

!!X1 ⊗ · · · ⊗ !!Xn

!(!X1 ⊗ · · · ⊗ !Xn)

!Y

pX1
⊗···⊗pXn

µn
!X1,...,!Xn

!f

We simply denote this morphism again as f ! because the only case where this
choice can introduce an ambiguity is n = 1, and in that case, both notions
coincide. Observe that this definition also makes sense when n = 0, in which
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case we have f ∈ L(1, Y ) and f ! ∈ L(1, !Y ). Again, if we were using monoidal
trees to make the presentation formally correct, this promotion operation should
be parameterized by a monoidal tree τ .

Let f ∈ L(!X1 ⊗ · · · ⊗ !Xn, Y ). The two following diagrams commute.

!X1 ⊗ · · · ⊗ !Xn !Y

Y

f !

f
dY

!X1 ⊗ · · · ⊗ !Xn !Y

!!Y

f !

f !!

pY

Exercise 4.1.12. Prove these commutations.

Exercise 4.1.13. Let g ∈ L(!X1 ⊗ · · · ⊗ !Xn ⊗ !Y, Z) and f ∈ L(!Xn+1 ⊗ . . . ⊗
!Xp, Y ). Prove that the following diagram commutes

!X1 ⊗ · · · ⊗ !Xp !X1 ⊗ · · · ⊗ !Xn ⊗ !Y

!Z

!X1⊗···⊗!Xn⊗f !

(g (!X1⊗···⊗!Xn⊗f !))!
g!

4.1.4.2 The structural morphisms

We define now morphisms corresponding to the structural rules of Linear Logic,
weakening and contraction. Let X be an object of L. We define wX ∈ L(!X, 1)
as the following composition of morphisms in L:

!X !⊤ 1
!tX (m0)

−1

where tX is the unique element of L(X,⊤) (since ⊤ is the terminal object of
L). Similarly, we define cX ∈ L(!X, !X ⊗ !X) as the following composition of
morphisms

!X !(X & X) !X ⊗ !X
!⟨X,X⟩ (m2

X,X)
−1

Then one proves easily (exercise) that (!X,wX , cX) is a symmetric comonoid in
the SMC (L, 1,⊗), in the sense of Section C.5.1.

Proposition 4.1.14. For any object X of L, the following diagram commutes

!X !X ⊗ !X

!!X !!X ⊗ !!X

cX

pX pX⊗pX

c!X
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Proof. In the following diagram

!X !(X & X) !X ⊗ !X

!!(X & X)

!!X !(!X & !X) !!X ⊗ !!X

pX

!⟨X,X⟩

(2)

(m2
X,X)

−1

pX&X

(1) pX⊗pX

!⟨!pr0,!pr1⟩

⟨!X,!X⟩

!!⟨X,X⟩

(m2
!X,!X)

−1

the square (2) commutes by naturality of p, the pentagon (1) is an instance
of Eq. (4.1) and the commutation of the remainig triangle results from the
fonctoriality of ! and of the pasic properties of the cartesian product.

Proposition 4.1.15. For any object X of L, the following diagram commutes

!!X !!X ⊗ !!X

!(!X ⊗ !X)

c!X

!cX
µ2
!X,!X

Exercise 4.1.16. Prove Proposition 4.1.15.

4.1.4.3 The Kleisli category

We have defined in Section C.4 the Kleisli category of a general comonad, we
apply it now to the comonad “ !” and get the category L!. This means that
the objects of this category are those of L, that the identity at X is dX and
that composition of f ∈ L!(X,Y ) and g ∈ L!(Y, Z) is g ◦ f = g !f pX . Notice
that there is a functor Der : L → L! which acts as the identity on objects and
maps f ∈ L(X,Y ) to f dX . This functor is faithful but not full and satisfies the
following property.

Lemma 4.1.17. If f ∈ L!(X,Y ) and g ∈ C(Y,Z) then Der(g) ◦ f = g f .

Lemma 4.1.18. The category L! is cartesian.

Proof. Given a finite family of objects (Xi)i∈I , (&i∈I Xi, (Pri)i∈I) is the product
of the Xi’s in L!, if we set Pri = Der(pri) for each i ∈ I. Let indeed (fi ∈
L!(X,Xi))i∈I , that is (fi ∈ L(!X,Xi))i∈I , then we have ⟨fi⟩i∈I ∈ L!(X,&i∈I Xi)
and Pri ◦ ⟨fj⟩j∈I = pri ⟨fj⟩j∈I = fi for each i ∈ I and if g ∈ L!(X,&i∈I Xi)
we have g = ⟨fj⟩j∈I by application of the universal property of the product in
L.

The associated cartesian product functor &! : L2
! → L! acts as the L

cartesian product of L on objects, and given (fi ∈ L!(Xi, Yi))i=1,2, then f1 &!

f2 ∈ L!(X1 & X2, Y1 & Y2) is the following composition of morphisms
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!(X1 & X2) !X1 & !X2 Y1 & Y2
⟨!pr1,!pr2⟩ f1&f2

Theorem 4.1.19. The category L! is cartesian closed.

Proof. Given objects X,Y of L we set

(X ⇒ Y ) = (!X ⊸ Y )

and define Ev ∈ L!((X ⇒ Y ) & X,Y ) as the following composition of morphisms
in L:

!((!X ⊸ Y ) & X)

!(!X ⊸ Y )⊗ !X

(!X ⊸ Y )⊗ !X

Y

(m2
!X⊸Y,X)

−1

d!X⊸Y ⊗Id

ev

The pair (X ⇒ Y,Ev) is the internal hom of X,Y in L!. Let indeed f ∈ L!(Z &
X,Y ), we have f m2

Z,X ∈ L(!Z ⊗ !X,Y ) and hence

Cur(f) = cur(f m2
Z,X) ∈ L!(Z,X ⇒ Y ) .

We check first that

Ev ◦ (Cur(f) &! dX) = f ∈ L!(Z & X,Y ) .

We have

Ev ◦(Cur(f) &! dX)

= ev (d!X⊸Y ⊗ !X) (m2
!X⊸Y,X)

−1
(Cur(f) &! dX)!

= ev (d!X⊸Y ⊗ !X) (m2
!X⊸Y,X)

−1

!(Cur(f) & dX) !⟨!pr1, !pr2⟩ pZ&X by naturality of (m2)
−1

= ev (d!X⊸Y ⊗ !X) (!Cur(f)⊗ !dX) (m2
!Z,!X)

−1
!⟨!pr1, !pr2⟩ pZ&X

= ev (d!X⊸Y ⊗ !X) (!Cur(f)⊗ !dX) (pZ ⊗ pX)m2
Z,X

−1 by Eq. (4.1).

Observe that d!X⊸Y !Cur(f) = Cur(f) d!Z by naturality of d and that !dX pX =
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Id!X by the comonad equations and hence

Ev ◦(Cur(f) &! dX)

= ev ((d!X⊸Y !Cur(f) pZ)⊗ !X)m2
Z,X

−1

= ev ((Cur(f) d!Z pZ)⊗ !X)m2
Z,X

−1 by naturality of d

= ev (Cur(f)⊗ !X)m2
Z,X

−1 by a comonad equation

= ev (cur(f m2
Z,X)⊗ !X)m2

Z,X
−1

= f m2
Z,X m2

Z,X
−1 by monoidal closedness

= f .

Next, given moreover g ∈ L!(U,Z) we check that

Cur(f) ◦ g = Cur(f ◦ (g &! dX)) .

We have

Cur(f) ◦ g = cur(f m2
Z,X) !g pU

= cur(f m2
Z,X ((!g pU )⊗ !X))

= cur(f !(g & X)m2
!U,X (pU ⊗ !X))

and on the other hand

Cur(f ◦ (g &! dX)) = cur(f !(g &! dX) pU&X m2
U,X)

= cur(f !(g & dX) !⟨!pr1, !pr1⟩ pU&X m2
U,X)

= cur(f !(g & dX)m2
!U,!X(pU ⊗ pX)) by Eq. (4.1).

= cur(f !(g & X)m2
!U,X(pU ⊗ (dX pX)))

= Cur(f) ◦ g .

Last we must check that

Cur(Ev) = d!X⊸Y

where Ev ∈ L!(!X ⊸ Y & X,Y ). We have

Cur(Ev) = Cur(ev (d!X⊸Y ⊗ !X) (m2
!X⊸Y,X)

−1
)

= cur(ev (d!X⊸Y ⊗ !X) (m2
!X⊸Y,X)

−1
m2

!X⊸Y,X)

= cur(ev) d!X⊸Y

= d!X⊸Y
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4.1.4.4 The Eilenberg-Moore category

The Eilenberg-Moore category L! of ! has as objects the coalgebras of ! which
are pairs P = (P , hP ) where P is an object of L and hP ∈ L(P , !P ) satisfies the
two following commutations

P !P

P

hP

Id
dP

P !P

!P !!P

hP

hP pP

!hP

Given objects P and Q of that category, L!(P,Q) is the set of all f ∈ L(P ,Q)
such that the following diagram commutes

P Q

!P !Q

f

hP hQ

!f

If X is an object of L, then E(X) = (!X, pX) is clearly an object of L!. If
f ∈ L!(X,Y ) = L(!X,Y ) then we set

E(f) = f ! = !f pX ∈ L(!X, !Y ) .

Intuitively, one should understand the Kleisli category L! as the category of
free coalgebras of !, this is made explicit by the following theorem which shows
that L! can be seen as a full subcategory of L!.

Theorem 4.1.20. The operation E is a full and faithful functor L! → L!.

Proof. We need first to prove that, given f ∈ L(!X,Y ), one has f ! ∈ L!(E(X),E(Y )).
This follows from

dY f
! = dY !f pX
= f dX pX by naturality of d
= f

and

pY f ! = !!f p!X pX by naturality of p

= !!f !pX pX

= !(f !) pX .

Next we have E(dX) = !dX pX = Id!X and, given f ∈ L(!X,Y ) and g ∈ L(!Y,Z),
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we have

E(g ◦ f) = !(g !f pX) pX
= !g !!f !pX pX
= !g !!f p!X pX
= !g pY !f pX by naturality of p

= E(g)E(f) .

Next observe that dY E(f) = f (for f ∈ L(!X,Y )) so that the functor E is
faithful. Last let f ∈ L!(E(X),E(Y )) so that dY f ∈ L(!X,Y ), we have

E(dY f) = !(dY f) pX
= !dY !f pX

= !dY pY f since f ∈ L!(E(X),E(Y ))

= f

which proves that the functor E is full.

Theorem 4.1.21. The category L! is cocartesian.

Proof. Let (Pi)i∈I be a finite family of objects of L and let X = ⊕i∈I Pi. For
each j ∈ J we have !inj hPj

∈ L(Pj , !X) and hence we can set

h =
[
!inj hPj

]
j∈J ∈ L(X, !X) .

We prove that this is a !-coalgebra structure on X. First we have

dX h =
[
dX !inj hPj

]
j∈J

=
[
inj dPj

hPj

]
j∈J

by naturality of d

= [inj ]j∈J since each Pj is a coalgebra

= IdX .

Next we have

pX h =
[
pX !inj hPj

]
j∈J

=
[
!!inj pPj

hPj

]
j∈J

by naturality of p

=
[
!!inj !hPj

hPj

]
j∈J since each Pj is a coalgebra

and

!hh =
[
!h !inj hPj

]
j∈J

=
[
!(h inj) hPj

]
j∈J

=
[
!(!inj hPj

) hPj

]
j∈J by definition of h
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so that pX h = !hh which shows that (X,h) is a !-coalgebra.
Observe that ini ∈ L!(Pi, (X,h)) for all i ∈ I since h ini = !ini hPi

by defini-
tion of h.

We prove that (X,h), together with the injections ini, is the coproduct of
the Pi’s in L! so let (fi ∈ L!(Pi, P ))i∈I . We prove that f = [fi]i∈I ∈ L(X,P ) is
in L!((X,h), P ): we have

hP f = [hP fi]i∈I

= [!fi hPi
]i∈I since fi ∈ L!(Pi, P )

= [!f !ini hPi
]i∈I by definition of f

= !f [!ini hPi
]i∈I

= !f h

so that f is the unique element of L!((X,h), P ) such that f ini = fi for all i ∈ I,
which shows that (X,h) = ⊕i∈I Pi (with injections (ini)i∈I).

Lemma 4.1.22. The object 1 of L has a !-coalgebra structure which turns it
into the terminal object of L!.

Proof. We set h1 = !(m0)
−1

p⊤ m0 which is typed as follows

1 !⊤ !!⊤ !1 .m0 p⊤ !(m0)
−1

We have

d1 h1 = (m0)
−1

d!⊤ p⊤ m0

= (m0)
−1

m0 = Id

and

p1 h1 = !!(m0)
−1

p!⊤ p⊤ m0

= !!(m0)
−1

!p⊤ p⊤ m0

= !!(m0)
−1

!p⊤ !m0 !(m0)
−1

p⊤ m0

= !h1 h1

which shows that (1, h1) is an !-coalgebra.
Let P be an arbitrary coalgebra, and let wP = (m0)

−1
!tP hP ∈ L(P , 1),

typed as follows

P !P !⊤ 1
hP !tP (m0)

−1
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We check that wP ∈ L!(P, 1): we have

h1 wP = !(m0)
−1

p⊤ m0 (m0)
−1

!tP hP

= !(m0)
−1

p⊤ !tP hP

= !(m0)
−1

!!tP pP hP by naturality of p

= !(m0)
−1

!!tP !hP hP because P is a coalgebra
= !wP hP .

Let now f ∈ L!(P, 1), which means that f ∈ L(P , 1) and !f hP = h1 f =
!(m0)−1 p⊤ m0 f , that is !(m0 f) hP = p⊤ m0 f . We have

m0 f = !d⊤ p⊤ m0 f since !d⊤ p⊤ = Id!⊤

= !d⊤ !(m0 f) hP

= !(d⊤ m0 f) hP

= !tP hP since ⊤ is the terminal object of L

and hence f = wP , which shows that 1 is the terminal object of L!.

Let P1, P2 be objects of L!. We define h ∈ L(P1 ⊗ P2, !(P1 ⊗ P2)) as the
following composition of morphisms

P1 ⊗ P2 !P1 ⊗ !P2 !(P1 ⊗ P2)
hP1

⊗hP2
µ2
P1,P2

Lemma 4.1.23. Equipped with the morphism h, the object P1 ⊗ P2 is an !-
coalgebra that we denote as P1 ⊗ P2.

Proof. We have

dP1⊗P2
h = dP1⊗P2

µ2
P1,P2

(hP1
⊗ hP2

)

= (dP1
⊗ dP2

) (hP1
⊗ hP2

)

= Id

and

pP1⊗P2
h = pP1⊗P2

µ2
P1,P2

(hP1 ⊗ hP2)

= !µ2
P1,P2

µ2
!P1,!P2

(pP1
⊗ pP2

) (hP1
⊗ hP2

) by Proposition 4.1.9

= !µ2
P1,P2

µ2
!P1,!P2

(!hP1 ⊗ !hP2) (hP1 ⊗ hP2)

since P1 and P2 are coalgebras

= !µ2
P1,P2

!(hP1 ⊗ hP2)µ
2
!P1,!P2

(hP1 ⊗ hP2) by naturality of µ2

= !h f .

Lemma 4.1.24. Let (fi ∈ L!(Pi, Qi))i=1,2. Then f1⊗f2 ∈ L!(P1⊗P2, Q1⊗Q2).
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Proof. By definition of coalgebra morphisms and naturality of µ2.

For any object P of L!, one defines a generalized contraction morphism
cP ∈ L(P , P ⊗ P ) as

P !P !P ⊗ !P P ⊗ PhP cP dP⊗dP

Our goal now is to prove that this morphism of L is actually a coalgebra mor-
phisms from P to the coalgebra P ⊗ P we juste defined, and for this we fol-
low [Mellies]. The main observation is that, in spite of the fact that hP dP has
no reason to be equal to Id!P , we have the following property.

Lemma 4.1.25. For any object P of L!, the following diagram commutes.

P !P !P ⊗ !P P ⊗ P

!P !P ⊗ !P

hP

hP

cP dP⊗dP

hP⊗hP

cP

Proof. One proceeds by diagram chasing in

P !P !P ⊗ !P P ⊗ P

!!P !!P ⊗ !!P

!P !P ⊗ !P

hP

hP

(1)

cP

!hP (2)

dP⊗dP

!hP⊗!hP

(3) hP⊗hP
c!P

d!P⊗d!P

cP

pP
(4)

where (1) commutes because P is a coalgebra, (2) commutes by naturality of
cX in X, (3) commutes by naturality of dX in X and (4) commutes by Propo-
sition 4.1.14 and by the fact that d!P pP = Id.

Lemma 4.1.26. For any object X of L, the following diagram commute

!X !X ⊗ !X

!!X !(!X ⊗ !X) !(X ⊗X)

cX

pX µ2
X,X

!cX !(dX⊗dX)

Proof. Diagram chasing in

!X !X ⊗ !X

!!X !!X ⊗ !!X

!!X !(!X ⊗ !X) !(X ⊗X)

cX

pX (1)

µ2
X,X

c!X

(2) µ2
!X,!X

!dX⊗!dX

(3)
!cX !(dX⊗dX)
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where (1) commutes by Proposition 4.1.14 and by the fact that !dP pP = Id, (2)
commutes by Proposition 4.1.15 and (3) commutes by naturality of µ2.

Theorem 4.1.27. For any object P of L!, one has cP ∈ L!(P, P ⊗ P ).
Proof. Diagram chasing in

P !P !P ⊗ !P P ⊗ P

!P !P ⊗ !P

!P !!P !(!P ⊗ !P ) !(P ⊗ P )

hP

hP

hP

(1)

cP

(2)

dP⊗dP

hP⊗hP

cP

pP (3) µ2
P,P

!hP !cP !(dP⊗dP )

where (1) commutes because P is a coalgebra, (2) commutes by Lemma 4.1.25
and (3) commutes by Lemma 4.1.26.

We define pr
(!)
i ∈ L(P1 ⊗ P2, Pi) for i = 1, 2 as the following compositions of

morphisms

P1 ⊗ P2 P1 ⊗ 1 P1

P1 ⊗ P2 1⊗ P2 P1

P1⊗wP2 ρ

wP1
⊗P2 λ

Lemma 4.1.28. The morphism pr
(!)
i of L belongs to L!(P1 ⊗ P2, Pi).

The proof is straightforward and uses the fact that morphisms wPi
are coal-

gebra morphisms.

Theorem 4.1.29. Given objects P1 and P2 of L!, the triple (P1⊗P2, pr
(!)
1 , pr

(!)
2 )

is the cartesian product of P1 and P2 in L!.

Proof. Let (fi ∈ L!(Q,Pi))i=1,2, then we define ⟨f1, f2⟩(!) ∈ L(Q,P1 ⊗ P2) as

Q Q⊗Q P1 ⊗ P2
cQ f1⊗f2

By Theorem 4.1.27 and Lemma 4.1.24, we have ⟨f1, f2⟩(!) ∈ L!(Q,P1⊗P2). The
fact that pr

(!)
i ⟨f1, f2⟩(!) = fi results from the naturality of wP in P and from

the fact that (Q, cQ,wQ) is a comonoid. Let g ∈ L!(R,Q), then

⟨f1, f2⟩(!) g = (f1 ⊗ f2) cQ g
= (f1 ⊗ f2) (dQ ⊗ dQ) cQ hQ g

= (f1 ⊗ f2) (dQ ⊗ dQ) cQ !g hR

= (f1 ⊗ f2) (dQ ⊗ dQ) (!g ⊗ !g) cR hR

= ((f1 g)⊗ (f2 g)) (dR ⊗ dR) cR hR

= ⟨f1 g, f2 g⟩(!) .
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Last, with Q = P1 ⊗ P2, we have

⟨pr(!)1 , pr
(!)
2 ⟩(!) = (pr

(!)
1 ⊗ pr

(!)
2 ) cP1⊗P2

= (ρ⊗ λ) (P1 ⊗ wP2
⊗ wP1

⊗ P2) (dP1⊗P2
⊗ dP1⊗P2

) cP1⊗P2
hP1⊗P2

= (ρ⊗ λ) (P1 ⊗ wP2
⊗ wP1

⊗ P2) (dP1⊗P2
⊗ dP1⊗P2

) cP1⊗P2
µ2
P1,P2

(hP1
⊗ hP2

)

4.1.5 Interpreting the sequent calculus in a Seely category
Remember that a sequent is an expression ⊢ Γ where Γ = A1, . . . , An is a finite
sequence of formulas of Linear Logic.

We assume to be given a categorical model L of Linear Logic.
First, with each formula A of Linear Logic we can assign an object [A] of L

by an obvious induction:

[1] = 1 [A1 ⊗A2] = [A1]⊗ [A2]

[⊥] = ⊥ [A1 `A2] = [A1]` [A2]

[0] = 0 [A1 ⊕A2] = [A1]⊕ [A2]

[⊤] = ⊤ [A1 & A2] = [A1] & [A2]

[!A] = ![A] [?A] = ?[A]

The semantics a sequence Γ = (A1, . . . , An) is parameterized by a monoidal
tree τ of degree n: we set [Γ]τ = Tτ̀ ([A1], . . . , [An]).

Given a proof π of the sequent Γ, we define for each well-formed tree τ of
degree n a morphism

[π]τ ∈ L(1, [Γ]τ )

in such a way that, for any other well-formed tree of degree n, one has

[π]τ
′
= φτ̀,τ ′ [π]τ
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Chapter 5

Coh

Uniform coherent spaces were defined by Girard in [17] as a variant of Scott
domains giving a denotational semantics to system F . However their main
interest was the analogy they bare with linear algebra that led Girard to discover
firstly their linear structure from which he could then derive the definition of
linear logic.

In this chapter we will stick to the historical terminology and call uniform
coherent spaces just coherent spaces. Most proofs will be sketched, when not
left to the reader. We will also use the convenient language of category theory,
the reader is refered to the chapter 4 for the basic definitions and properties.

5.1 Coherent spaces

5.1.1 The coherence relation
A coherent space E is a structure

E = (|E|,¨E)
where |E| is a set (which can be assumed to be at most countable) and ¨E is a
binary reflexive and symmetric relation on |E| called coherence.

We use the following definitions and notations:

Strict coherence: ˝E = (¨E ∩ ̸=), that is a ˝E a′ iff (a ¨E a′ and a ̸= a′);

Incoherence: ˚E = ¬ ˝E , that is a ˚E a′ iff (a ̸¨E a′ or a = a′);

Strict incoherence: ˇE = ¬ ¨E , that is a ˇE a′ iff a ̸¨E a′.

Note that any of these four relations caracterises the three others.
An easy consequence of these definitions, that will be used in the sequel is

that the intersection of ¨E and ˚E is equality:

∀a, a′ ∈ |E|, a = a′ iff a ¨E a′ and a ˚E a′

143
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A clique of E is a set of pairwise coherent points of |E|; we denote by Cl(E)
the set of cliques:

Cl(E) = {u ⊂ |E|, ∀a, a′ ∈ u, a ¨E a′}

We note u ⊏ E when u is a clique of E, that is u ⊏ E iff u ∈ Cl(E). The
following properties are immediately derived from the definition.

Proposition 5.1.1 (Elementary properties of cliques). Let E be a coherent
space. We have:

• ∅ ⊏ E so that Cl(E) is never empty (even when the web is empty).

• Singletons are cliques: for any a ∈ |E|, {a} ⊏ E.

• Cl(E) is downward closed for inclusion: if u ⊏ E and u′ ⊂ u then u′ ⊏ E.
For that reason we call u′ a subclique of u.

• Cl(E) is closed by directed unions: if U is a directed family of cliques of
E, then

⋃
U is a clique. In particular any clique u is the directed union

of its finite subcliques:

u =
⋃
{u0 ∈ Cl(E), u0 ⊂fin u} .

These three properties imply in particular that the space Cl(E) ordered by
inclusion is a Scott domain (see section 6.1). However it is a special case of
Scott domain that satisfies binary completeness: say that a set U of cliques
is compatible if the union of any two cliques in U is a clique; binary completeness
states that if U is any compatible set of cliques then

⋃
U is a clique. Note that

if U is directed then it is compatible, but the converse is not necessarily true,
thus binary completeness is indeed stronger than closure by directed union.

Proposition 5.1.2 (Dual of a coherent space). The space E⊥ = (|E|,˚E) is
a coherent space. The cliques of E⊥ are sets of pairwise incoherent points and
are called the anticliques of E.

The dual of the dual (E⊥)⊥ is denoted E⊥⊥. By definition of incoherence
we have:

E⊥⊥ = E .

The last property exhibits a canonical duality in coherent spaces: we will see
that it is the very reason why the category of coherent spaces is ∗-autonomous.

5.1.2 Clique spaces
The notion of clique spaces is an alternative, and more modern way, for defining
coherent spaces that is based on the fact that, given a coherent space E, cliques
and anticliques of E intersect in at most one point:

For all u ⊏ E, u′ ⊏ E⊥, Card(u ∩ u′) ≤ 1



5.1. COHERENT SPACES 145

Indeed if a, a′ ∈ u ∩ u′ then a ¨E a′ because u is a clique, and a ˚E a′ because
u′ is an anticlique, thus a = a′.

When u and u′ are two subsets of a set X we say that u and u′ are orthogonal
and note u ⊥ u′ if their intersection has at most one element:

u ⊥ u′ iff Card(u ∩ u′) ≤ 1

Thus any clique and anticlique of a coherent space are orthogonal.
If U is a family of subsets of X we denote by U⊥ the set of subsets of X

othogonal to all elements of U :

U⊥ = {u′ ⊂ X, ∀u ∈ U, u ⊥ u′}

Proposition 5.1.3. Let E be a coherent space; a subset u ⊂ |E| is a clique iff
it is orthogonal to all anticliques:

u ⊏ E iff ∀u′ ⊏ E⊥, u ⊥ u′

Thus we have:
Cl(E) = Cl(E⊥)⊥

Proof. The only if part is immediate. Suppose u is orthogonal to any anticlique
and let a, a′ ∈ u. If a ˚E a′ then {a, a′} is an anticlique of E, and since
u ⊥ {a, a′} we have Card(u∩{a, a′}) ≤ 1, but since a, a′ ∈ u, u∩{a, a′} cannot
be void, thus is a singleton. In summary, if a ˚E a′ then a = a′, which by
definition of ˚E is equivalent to a ¨E a′.

Note that, since E⊥⊥ = E, we also have:

Cl(E⊥) = Cl(E)⊥

from which we deduce
Cl(E)⊥⊥ = Cl(E)

This property motivates the following definition: a clique space E is a struc-
ture

E = (|E|, CE)

where |E| is a set and CE is a family of subsets of |E| that is equal to its
biorthogonal:

CE
⊥⊥ = CE

Proposition 5.1.4. Let E = (|E|, CE) be a clique space. Then we have:

• ∅ ∈ CE.

• For any a ∈ |E|, {a} ∈ CE

• CE is downward closed for inclusion.

• CE is closed by directed union.
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Proof. Clearly ∅ ⊥ u′ and {a} ⊥ u′ for any u′ ∈ C⊥
E thus ∅, {a} ∈ CE⊥⊥ = CE .

Let u ∈ CE , v ⊂ u and u′ ∈ C⊥
E ; since v ⊂ u, Card(v∩u′) ≤ Card(u∩u′) ≤ 1

thus v ⊥ u′. Therefore v ∈ CE⊥⊥ = CE .
Let U be a directed family of elements of CE . Let u′ ∈ C⊥

E and a1, a2 ∈⋃
U ∩ u′. Since ai ∈

⋃
U there are u1, u2 ∈ U such that a1 ∈ u1 and a2 ∈ u2

but since U is directed there is u ∈ U such that a1, a2 ∈ u. As U ⊂ CE we have
u ⊥ u′ that is Card(u ∩ u′) ≤ 1. But a1, a2 ∈ u ∩ u′, thus a1 = a2 and we have
proved that Card(

⋃
U∩u′) ≤ 1, that is

⋃
U ⊥ u′. Thus

⋃
U ∈ CE⊥⊥ = CE .

The following theorem expresses the fact that clique spaces are really an
alternative definition for coherent spaces:

Theorem 5.1.5. If E is a coherent space then Clique(E) = (|E|,Cl(E)) is a
clique space. Conversely if E is a clique space, we set a ¨E a′ iff {a, a′} ∈ CE.
Then Coh(E) = (|E|,¨E) is a coherent space.

Furthermore the two operations Coh and Clique are inverse of each other:
for any coherent space E, Coh(Clique(E)) = E and for any clique space E,
Clique(Coh(E)) = E.

Proof. The fact that Clique(E) is a clique space is immediate consequence of
the proposition 5.1.3. Conversely suppose E is a clique space and define ¨E as
above. Since it is obviously symmetric we just have to show that ¨E is reflexive,
that is that {a} ∈ CE for any a ∈ |E| which is proved in the proposition 5.1.4.

Suppose now that E = (|E|,¨) is a coherent space and define the relation ¨E
by a ¨E a′ iff {a, a′} ∈ Cl(E). We thus have Coh(Clique(E)) = (|E|,¨E) and
we have to show that ¨E = ¨: let a, a′ ∈ |E|, then a ¨E a′ iff {a, a′} ∈ Cl(E)
iff a ¨ a′.

Conversely suppose E = (|E|, CE) is a clique space; define Cl(E) to be the
set of cliques of the coherent space Coh(E) = (|E|,¨E) where ¨E is defined by
a ¨E a′ iff {a, a′} ∈ CE . We have to show that CE = Cl(Coh(E)).

Let u ∈ CE and a, a′ ∈ u; then {a, a′} ∈ CE thus a ¨E a′ which shows that
u is a clique: u ∈ Cl(Coh(E)). Conversely let u ∈ Cl(Coh(E)), u′ ∈ C⊥

E and
a1, a2 ∈ u ∩ u′. Since a1, a2 ∈ u we have a1 ¨E a2 thus {a1, a2} ∈ CE . But
u′ ∈ C⊥

E thus {a1, a2} ∩ u′ has at most one element, thus a1 = a2. Therefore
u ⊥ u′ so that u ∈ CE⊥⊥ = CE .

Example 5.1.6 (The space of booleans). The coherent space of booleans B is
defined by: |B| = {0, 1} is the two-points set, and a ¨B b iff a = b. The space
B has three cliques that we will denote by ⊥ = ∅, F = {0} and V = {1} to
emphasize the fact that it is isomorphic to the flat domain of booleans.

5.2 The cartesian closed structure of coherent spaces
This section is here mostly for historical reasons: we will briefly define a first
notion of morphism between coherent spaces, stable functions, that makes the
category of coherent spaces a model of typed lambda-calculus. Most proofs are
straigthforward and left to the reader.
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We will end up with the origin of linear logic: the fact that stable func-
tions can be decomposed through linear functions and the exponential space as
expressed by the famous isomorphism:

X → Y ≃ !X ⊸ Y

5.2.1 Stable functions
Let X and Y be coherent spaces. A stable function from X to Y is a map
F : Cl(X)→ Cl(Y ) satisfying:

Continuity: F is monotone (for inclusion) and commutes with directed unions:
if U is a directed family of cliques in X then:

F
(⋃

U
)
=

⋃
u∈U

F (u)

Note that since F is monotone, the family (F (u))u∈U is directed in Cl(Y )
thus the right member is a clique of Y .

Stability: F commutes with compatible intersections: if u and u′ are such that
u ∪ u′ ⊏ X then:

F (u ∩ u′) = F (u) ∩ F (u′)

Continuity states that F is continuous in the Scott sense. Stability was first
introduced by Berry [6] as a property of Scott-continuous functions expressing
a kind of determinism of certain computable functions. Stability was discovered
independently by Girard who uses it as we will see to endow the space of stable
functions with the structure of coherent space.

One easily checks that the composition of two stable functions is stable
and that the identity function: IdX : Cl(X) → Cl(X) is stable, thus that
coherent spaces with stable functions form a category. The hom set of stable
functions from X to Y will be denoted Stable(X,Y ) and we will sometimes
write F : X → Y for F ∈ Stable(X,Y ). If F is bijective and its reciprocal
F−1 : Cl(Y )→ Cl(X) is stable we say that F is a stable isomorphism.

A map F : Cl(X0)×Cl(X1)→ Cl(X) is bi-stable if it is stable in each of its
variables, that is if for each xi ⊏ Xi the map Fxi

= λxı̄ F (x0, x1) : Cl(Xı̄) →
Cl(X) is stable (where ı̄ = 1− i). This definition extends naturally to functions
of arity n.
Example 5.2.1 (Parallel-or). The function Por : Cl(B)×Cl(B)→ Cl(B) (where
B is the boolean space defined in example 5.1.6) is the paradigmatic function
that is continuous but not (bi-)stable. It is defined by:

Por(x,V) = Por(V, x) = V for any x ⊏ B
Por(F,F) = F

Por(⊥,⊥) = Por(⊥,F) = Por(F,⊥) = ⊥

It is not stable because Por(⊥,V) = Por(V,⊥) = V but the intersection of
(⊥,V) and (V,⊥) is (⊥,⊥) and Por(⊥,⊥) = ⊥ ≠ V.
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Example 5.2.2 (The Gustave function). This famous example was proposed by
Berry as a function that, although (tri-)stable, is not sequential: it cannot be
implemented by a lambda-term (and more generally by any sequential program).
It is the monotone function G : Cl(B)× Cl(B)× Cl(B)→ Cl(B) defined by:

G(V,V,V) = G(F,F,F) = F

G(V,F, x) = G(x,V,F) = G(F, x,V) = V for any x ⊏ B

G(x, y, z) = ⊥ for any other (x, y, z) ∈ Cl(B)3

The function G checks whether it has two distinct arguments by testing that two
consecutive arguments are V, F respectively. It is a kind of ternary parallel-or
but contrarily to the parallel-or it is stable.

5.2.2 Cartesian product
If X0 and X1 are coherent spaces we define X0&X1 = (|X0&X1|,¨X0&X1

) by:

Web: |X0 &X1| = {0} × |X0| ∪ {1} × |X1|.

Coherence: (i, a) ¨X0&X1
(j, b) iff

{
i ̸= j or
i = j and a ¨Xi b

Any clique x ⊏ X0&X1 has the form x = {0}×pr0(x) ∪ {1}×pr1(x) where
pri(x) ⊏ Xi is defined by pri(x) = {a ∈ |Xi|, (i, a) ∈ x}. From this we get:

Lemma 5.2.3. A map F : Cl(X0) × Cl(X1) → Cl(X) is bi-stable iff the map
F ◦ φ : X0 &X1 → X is stable where φ is the bijective function defined by:

φ : Cl(X0 &X1)→ Cl(X0)× Cl(X1)

x 7→ (pr0(x), pr1(x))

In view of this property we will identify Cl(X0 &X1) with Cl(X0)×Cl(X1)
and write (x0, x1) the clique {0} × x0 ∪ {1} × x1.

No surprise if we thus get:

Theorem 5.2.4. The space X0 & X1 is a cartesian product (see section ??)
in the category of coherent spaces (and stable functions): the maps pr0 : X0 &
X1 → X0 and pr1 : X0 & X1 → X1 are stable and satisfy that for any stable
F0 : X → X0 and F1 : X → X1 there is a unique stable F : X → X0 & X1

making the diagram commute:

X

X0 X0 &X1 X1

F0
F

F1

pr0 pr1

The morphism F is often denoted ⟨F0, F1⟩. The pairing is given by F (x) =
{0} × F0(x) ∪ {1} × F1(x) = (F0(x), F1(x)) according to our notational con-
vention.
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5.2.3 The coherent space of stable functions

The fundamental lemma on stable functions is:

Lemma 5.2.5. Let F : Cl(X)→ Cl(Y ) be a monotone function (for inclusion).
Then F is stable iff for any clique x ⊏ X and any point b ∈ F (x) there is a
finite subclique x0 ⊂ x such that:

• b ∈ F (x0) and

• for any x′ ⊂ x, if b ∈ F (x′) then x0 ⊂ x′.

The existence of the finite subclique x0 is consequence of continuity; the
least property is consequence of stability. We let the reader check the details.

We denote by Clfin(X) the set of finites cliques of X; when x0 is a finite
clique we write x0 ⊏fin X.

Let F : X → Y is stable, we define the trace of F to be the set

Tr(F ) = {(x0, b) ∈ Clfin(X)× |Y |, x0 minimal such that b ∈ F (x0)}

To make things clear again, by “minimal such that...” we mean that for any
subclique x′ ⊂ x0, if b ∈ F (x′) then x′ = x0.

The lemma suggests the following definition of the coherent space X ⇒ Y
(designed so that Tr(F ) is a clique of X ⇒ Y ):

Web: |X ⇒ Y | = Clfin(X)× |Y |.

Coherence: (x0, b) ˝X⇒Y (x′0, b
′) iff x0 ∪ x′0 ̸⊏ X or b ˝Y b′.

Note that it is more convenient here to first define strict coherence, from which
we deduce the coherence relation by (x0, b) ¨X⇒Y (x′0, b

′) iff (x0, b) = (x′0, b
′)

or (x0, b) ˝X⇒Y (x′0, b
′).

If f ⊏ X ⇒ Y is a clique of the just defined coherent space we denote by
Fun(f) the function from Cl(X) to Cl(Y ) defined by:

Fun(f) : Cl(X)→ Cl(Y )

x 7→ {b ∈ |Y |, ∃x0 ⊂ x, (x0, b) ∈ f}

Theorem 5.2.6. If F : X → Y is stable then Tr(F ) ⊏ X ⇒ Y and we have
Fun(Tr(F )) = F . Conversely if f ⊏ X ⇒ Y then Fun(f) : X → Y is stable and
we have Tr(Fun(f)) = f .

Thus X ⇒ Y may be viewed as the coherent space of (traces of) stable
functions.

Theorem 5.2.7. The category of coherent spaces and stable functions is carte-
sian closed.
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Proof. In view of the definition of cartesian closed categories (see section ??)
we just have to define the evaluation map and the curryfication operation and
check equations ??:

Ev : (X ⇒ Y ) &X → Y
(f, x) 7→ Fun(f)(x)

Cur : Stable(Z &X,Y ) → Stable(Z,X ⇒ Y )

F : Z &X → Y 7→ Cur(F ) : Z → X ⇒ Y
z 7→ Tr(λxF (z, x))

in which, all maps (but Cur) being stable we used the notation F : X → Y for
F : Cl(X)→ Cl(Y ) and the identification (z, x) = {0}× z ∪ {1}× x. We leave
the verifications of the equations to the reader.

5.3 The monoidal structure of coherent spaces

5.3.1 Linear functions
A linear function between coherent spaces X and Y is a stable function F : X →
Y commuting with all compatible unions (as opposed to continuous functions
that commute only with directed unions). More precisely F : Cl(X) → Cl(Y )
is linear if:

Linearity: For any family U of cliques in X such that
⋃
U is a clique:

F
(⋃

U
)
=

⋃
u∈U

F (u)

Stability: F commutes with compatible intersections.

Remark 5.3.1. The linearity condition entails that F is monotone and contin-
uous, thus that a linear function is stable. The converse is false because the
linearity condition, commutation with any union, is much stronger than the
continuity condition, commutation with directed unions. For example when ap-
plied to the empty union linearity entails that the empty clique is sent on the
empty clique: if F is linear than F (∅) =

⋃
x∈∅ F (x) = ∅. This argument doesn’t

apply to continuity because a directed set is nonempty; typically a constant
function such as λxV : B → B is stable but nonlinear because T (∅) = V.

Sending the empty clique on the empty clique is necessary but not sufficient
for linearity, we give an example shortly.

Example 5.3.2 (Identity). The identity function IdX : X → X is linear.

Example 5.3.3 (Projections). The projections pri : X0 &X1 → Xi are linear.

Example 5.3.4. The evaluation map Ev : (X ⇒ Y )&X → Y is linear in its first
argument: for each x ⊏ X the function λf Ev(f, x) : (X ⇒ Y )→ Y is linear.
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Example 5.3.5. The Gustave function, viewed as defined on Cl(B & B & B)
is not linear although it sends the empty clique on the empty clique. In-
deed G(V,⊥,⊥) = G(⊥,F,⊥) = ⊥ but (V,⊥,⊥) ∪ (⊥,F,⊥) = (V,F,⊥) and
G(V,F,⊥) = V whereas ⊥ ∪⊥ = ⊥.

The composition of linear functions is clearly a linear function, so that coher-
ent spaces with linear functions form a subcategory of the category of coherent
spaces and stable functions. We will denote Lin(X,Y ) the hom set of linear
functions from X to Y and write F : X →ℓ Y for F ∈ Lin(X,Y ).

5.3.2 Tensor product
We define the coherent space X0 ⊗X1 by:

Web: |X0 ⊗X1| = |X0| × |X1|.

Coherence: (a0, a1) ¨X0⊗X1
(a′0, a

′
1) iff a0 ¨X0

a′0 and a1 ¨X1
a′1.

Proposition 5.3.6. The tensor product enjoys the following properties, in
which all mentionned isomorphisms are linear isomorphisms and the Xis are
any coherent spaces:

Associative: X0 ⊗ (X1 ⊗X2) ≃ (X0 ⊗X1)⊗X2.

Symmetric: X0 ⊗X1 ≃ X1 ⊗X0.

Unit: The space 1 defined by |1| = {∗} (singleton set) and ∗ ¨1 ∗ is the unit
of the tensor: X ⊗ 1 ≃ 1⊗X ≃ X.

A stable function F : X0 & X1 → X is bilinear if it is linear in each of its
arguments, that is if for each xi ⊏ Xi, the maps Fxi = λxı̄ F (x0, x1) : Cl(Xı̄)→
Cl(X) is linear.

As in vector spaces, bilinear maps factorize through the tensor space:

Theorem 5.3.7. Let ψ : X0&X1 → X0⊗X1 be the (bi-)stable function defined
by ψ(x0, x1) = x0 × x1. Then ψ is bilinear.

Furthermore if F : X0&X1 → X is a bilinear function then there is a unique
linear F̂ : X0 ⊗X1 →ℓ X such that F = F̂ ◦ ψ. Diagrammatically:

X0 &X1 X

X0 ⊗X1

ψ

F

F̂

Remark 5.3.8 (Extension by linearity). If F : X ⊗ Y →ℓ Z is linear then F
is completely determined by its value on rectangle cliques, that is cliques of
the form x × y. Indeed any clique t ⊏ X ⊗ Y may be decomposed into a
union of rectangles, for example t =

⋃
x×y⊂t x × y, so that by linearity F (t) =⋃

x×y⊂t F (x× y).
We will often use this fact to define a linear function only on rectangles and

say that we extend the definition by linearity.
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5.3.3 The coherent space of linear functions
As with stable functions there is a fundamental lemma for linear functions:

Lemma 5.3.9. Let F : Cl(X)→ Cl(Y ) be a monotone map. Then F is linear
iff for any clique x ⊏ X and any point b ∈ F (x), there is an a ∈ x such that:

• b ∈ F ({a}) and

• for any x′ ⊂ x, if b ∈ F (x′) then a ∈ x′.

Compared to stable functions, linear functions satisfy the stronger property
that the finite least subclique x0 ⊂ x such that b ∈ F (x0) is a singleton {a} (in
particular it is nonempty).

Proof. If F is linear than write x =
⋃
a∈x{a} and apply linearity to get a; note

that F being linear F (∅) = ∅ so that {a} is minimal such that b ∈ F{a}. By
stability we thus have {a} ⊂ x′ for any x′ ⊂ x such that b ∈ F (x′).

Conversely assume F satisfy the property. By the fundamental lemma for
stable functions 5.2.5 we deduce that F is stable. To get linearity let (xi)i∈I be
a family of cliques such that x =

⋃
xi is a clique and b ∈ F (x). By the property

there is an a ∈ x such that b ∈ F ({a}). Since a ∈ x there is an xi such that
a ∈ xi ⊂ x thus b ∈ F (xi) and we have proved that F (x) ⊂

⋃
i∈I F (xi); the

other inclusion is immediate by monotonicity of F .

Let F : X →ℓ Y be a linear function, we define the linear trace of F as the
set:

Trℓ(F ) = {(a, b) ∈ |X| × |Y |, b ∈ F ({a})

Although Trℓ(F ) is a subset of |X ⊗Y | it is not in general a clique of X ⊗Y
so we have to design a new coherent space for that. The space X ⊸ Y is defined
by:

Web: |X ⊸ Y | = |X| × |Y |.

Coherence: (a, b) ˝X⊸Y (a′, b′) iff ({a}, b) ˝X⇒Y ({a′}, b′) iff a ˇX a′ or
b ˝Y b′.

Just as the space for stable functions, the space X ⊸ Y is designed so that
Trℓ(F ) is a clique for any F : X →ℓ Y . Similarly we define a converse of Trℓ:
for any clique f ⊏ X ⊸ Y the (to be verified to be) linear function Funℓ(f) is:

Funℓ(f) : X →ℓ Y

x 7→ {b ∈ |Y |, ∃a ∈ x, (a, b) ∈ f}

Theorem 5.3.10. If F : X →ℓ Y is linear then Trℓ(F ) ⊏ X ⊸ Y and we have
Funℓ(Trℓ(F )) = F . Conversely if f ⊏ X ⊸ Y then Fun(f) : X →ℓ Y is linear
and we have Trℓ(Funℓ(f)) = f .

As a consequence we get:
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Theorem 5.3.11. The category of coherent spaces and linear functions is monoidal
symmetric closed.

Proof. The properties of the tensor (associativity, symmetry, neutral) are im-
mediate and depicted in the following. For the closure, as in the case of stable
functions we just have to define the evaluation map and the curryfication oper-
ation (see section ??):

Evℓ : (X ⊸ Y )⊗X →ℓ Y
f × x 7→ Funℓ(f)(x)

Curℓ : Lin(Z ⊗X,Y ) → Lin(Z,X ⊸ Y )

F : Z ⊗X →ℓ Y 7→ Curℓ(F ) : Z → X ⊸ Y
z 7→ Trℓ(λxF (z × x))

where Evℓ is defined by extension by linearity (see remark 5.3.8 above).

5.3.4 Duality
Recall that X⊥ is the dual of X defined by |X⊥| = |X| and ¨X⊥ = ˚X . We
thus also have ˝X⊥ = ˇX or equivalently ˇX⊥ = ˝X . Therefore we have:

(a, b) ˝X⊸Y (a′, b′) iff a ˇX a′ or b ˝Y b′

iff a ˝X⊥ a′ or b ˇY ⊥ b′

iff (b, a) ˝Y ⊥⊸X⊥ (b′, a′)

so that that the coherent spaces X ⊸ Y and Y ⊥ ⊸ X⊥ are naturally isomor-
phic by the contraposition isomorphism:

X ⊸ Y →ℓ Y
⊥⊸ X⊥

f 7→ f⊥ = {(b, a) ∈ |Y | × |X|, (a, b) ∈ f}

Theorem 5.3.12. The category of coherent spaces and linear function is ∗-
autonomous (see 4.1).

In particular the space 1 is the dualizing object that we will also denote ⊥
to emphasize this fact. We also have the linear isomorphism:

X⊥ ≃ X ⊸ ⊥

Note that the fact that the dualizing object is the same as the unit of the tensor
is a peculiarity of coherent spaces.

5.3.5 Additive constructions
Applying duality to the cartesian product & gives rise to a new construction:
the ⊕ thus defined by:

X0 ⊕X1 = (X⊥
0 &X⊥

1 )⊥

which can be explicited:
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Web: |X0 ⊕X1| = {0} ×X0 ∪ {1} ×X1.

Coherence: (i, a) ¨X0⊕X1
(j, b) iff

{
i = j and
a ¨Xi b

The cliques of X0 ⊕X1 are therefore of the form {i} × xi where xi ⊏ Xi so
that Cl(X0) ⊕ Cl(X1) may almost be viewed as the disjoint unions of Cl(X0)
and Cl(X1). There is a slight problem with the empty set though, because it is
a clique of both Xi but appears only once in X0 ⊕ X1, we come back on this
below.

Because |X0 & X1| = |X0 ⊕ X1| is the disjoint union of the webs, Girard
called them the additive constructions.

Theorem 5.3.13. The space X0 &X1 is a cartesian product in the category of
coherent spaces and linear functions: for i = 0, 1 the maps pri : X0 &X1 →ℓ Xi

are linear, an so is the pairing ⟨F0, F1⟩ : X →ℓ X0&X1 when each Fi : X →ℓ Xi

is linear.
Dually the space X0 ⊕X1 is a direct sum in the category of coherent spaces

and linear functions: the injections inji : Xi →ℓ X0⊕X1 are defined by inji(xi) =
{i} × xi, and given linear functions Fi : Xi →ℓ X the copairing is defined by:

[F0, F1] : X0 ⊕X1 →ℓ X

{i} × xi 7→ Fi(xi)

Remark 5.3.14. The space X0⊕X1 is not a direct sum in the category of stable
functions because the copairing is not defined on the empty set: if the Fis are
nonlinear we may have F0(∅) ̸= F1(∅) and there is no natural way to define
[F0, F1](∅) because ∅ is a clique in either space Xi. The problem doesn’t occur
when the Fis are linear because then F0(∅) = F1(∅) = ∅ so that we may safely
define [F0, F1](∅) = ∅. Girard mention this problem in [proofntypes] as the
one that led him to the discovery of linear functions.
Remark 5.3.15. The spaces X0 & X1 and X0 ⊕ X1 are different (in general),
contrarily to what happens in the category of finite dimension vector spaces or
in the category Rel of sets and relations in which there is a single biproduct
space that is at the same time a cartesian product and a direct sum.

To be complete we should add that both constructions have neutrals: the
space ⊤ = 0 is the space with empty web and trivial coherence relation. As for
the 1 and the ⊥ we use two different names for the same space to emphasize
the different roles it plays, as unit of & or of ⊕.

Let us end up this section with an enumeration of some linear isomorphisms:

De Morgan: 0⊥ = ⊤, ⊤⊥ = 0, (X&Y )⊥ = X⊥⊕Y ⊥, (X⊕Y )⊥ = X⊥&Y ⊥;
all these are actually equalities: same web, same coherence.

Neutrals: X &⊤ ≃ ⊤&X ≃ X, X ⊕ 0 ≃ 0⊕X ≃ X.

Commutativity, associativity: X&Y ≃ Y &X, X&(Y &Z) ≃ (X&Y )&Z
and similarly with ⊕.
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5.3.6 Multiplicative constructions
We already have two multiplicative spaces, thus named because their web is the
cartesian product of the web of their components: X ⊗ Y and X ⊸ Y . The
dual of the tensor is the so-called par construction denoted ` defined by:

X ` Y = (X⊥ ⊗ Y ⊥)⊥

which give rises to the explicit definition:

Web: |X ` Y | = |X| × |Y |.

Coherence: (a, b) ˝X`Y (a′, b′) iff a ˝X a′ or b ˝Y b′.

By construction we have:
X ⊸ Y = X⊥ ` Y

Remark 5.3.16. The ` construction is a tensor product (in the categorical sense)
which has the ⊥ space as unit. The fact that the ` is different from the ⊗ is
a main difference between coherent spaces and finite dimensional vector spaces
(or sets and relations): the latter form a compact closed category in which the
dual of the tensor is the tensor whereas coherent spaces and linear map form a
∗-autonomous category that is not compact closed.

Here is a collection of linear isomorphisms involving the multiplicative con-
structions:

De Morgan: 1⊥ = ⊥, ⊥⊥ = 1, (X⊗Y )⊥ = X⊥`Y ⊥, (X`Y )⊥ = X⊥⊗Y ⊥,
X ⊸ Y = X⊥ `Y , (X ⊸ Y )⊥ = X ⊗Y ⊥; just as in the additive case all
these isomorphisms are actually equalities.

Neutrals: X ⊗ 1 ≃ 1⊗X ≃ X, X `⊥ ≃ ⊥`X ≃ X.

Commutativity, associativity: X⊗Y ≃ Y ⊗Y , X⊗(Y ⊗Z) = (X⊗Y )⊗Z,
and similarly with the `. These isomorphisms are the final touch for the
symmetric monoidal structure of the category of coherent spaces and linear
functions.

Distributivity: X⊗ (Y ⊕Z) ≃ (X⊗Y )⊕ (X⊗Z), X⊗0 ≃ 0 and the similar
ones obtained by duality, expressing distributivity of the ` on the &.

Remark 5.3.17. The distributivity isomorphisms were another reason Girard
invoked for the terminology additive/multiplicative.

5.4 Exponentials
Recall the definition of the space X ⇒ Y in section 5.2.3: (x0, b) ˝X⇒Y (x′0, b

′)
iff x0 ∪ x′0 ̸⊏ X or b ˝Y b′ where (x0, b), (x

′
0, b

′) ∈ |X ⇒ Y | = Clfin(X) × |Y |.
This suggests the following definition of the exponential space !X (read of course
X or bang X):
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Web: |!X| = Clfin(X).

Coherence: x0 ¨!X x′0 iff x0 ∪ x′0 ⊏ X.

We can then rewrite the definition of X ⇒ Y as:

Web: |X ⇒ Y | = |!X| × |Y |.

Coherence: (x0, b) ˝X⇒Y (x′0, b
′) iff x0 ˇ!X x′0 or b ˝Y b′.

which we recognize as the definition of the space !X ⊸ Y , thus proving the
founding isomophism of linear logic:

X ⇒ Y = !X ⊸ Y

This equality on internal hom sets can also be depicted as an isomorphism
between the sets of stables functions Stable(X,Y ) and the set of linear functions
Lin(!X,Y ):

Theorem 5.4.1. Let !X : X → !X be the stable function defined by !X(x) =
{x0 ⊂fin x}, the set of finite subcliques of x.

If F : X → Y is a stable function we define its linearisation Fℓ : !X →ℓ Y
by Fℓ = Funℓ(Tr(F )) (so that Trℓ(Fℓ) = Tr(F )); by definition Fℓ is linear and
we have: F = Fℓ ◦ !X .

Conversely if L : !X →ℓ Y is linear then L ◦ !X : X → Y is stable and
(L ◦ !X)ℓ = L.

Remark 5.4.2. The closure property Fℓ = Funℓ(Trℓ(Fℓ)) allows us to define
functions by giving their trace, a convenience that we just used here and that
we will reuse in the sequel.

If F : X →ℓ Y is a linear function we define !F : !X →ℓ !Y by:

Trℓ(!F ) =
⋃
n≥0

{({a1, . . . , an}, {b1, . . . , bn}), (ai, bi) ∈ Trℓ(F ) for i = 1, . . . , n})

(which has to be checked to be a clique in !X ⊸ !Y ).

Theorem 5.4.3. The ! operation is functorial on the category of coherent spaces
and linear functions. Moreover it is a comonad the counit and comultiplication
of which are d : !→ℓ Id (dereliction) and p : !→ℓ !! (digging) defined by:

Trℓ(dX : !X →ℓ X) = {({a}, a), a ∈ |X|}

Trℓ(pX : !X →ℓ !!X) = {(u, U), u =
⋃
U}

The category of coherent spaces and stable functions is the co-Kleisli category
of the linear functions by the exponential comonad.
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Proof. For the functoriality and the comonad assertion one has to check a num-
ber of equations (see section 4.1.3 and the diagrams in the summary below) that
we leave to the reader.

Let Fℓ : !X →ℓ Y and Gℓ : !Y →ℓ Z and put F = Fℓ ◦ !X : X → Y , G = Gℓ ◦
!Y : Y → Z; the co-Kleisli composition of Fℓ and Gℓ is Gℓ ◦ !Fℓ ◦ ! pX : !X →ℓ Z.
To prove the co-Kleisli assertion we have to check that (G ◦F )ℓ = Gℓ ◦ !Fℓ ◦ pX ,
which in turn is consequence of the fact that !Fℓ ◦ pX = !Y ◦ Fℓ:

X

!X Y

!!X !Y Z

!X

F

G◦F

(G◦F )ℓ

pX

Fℓ

!Y
G

!Fℓ Gℓ

Remark 5.4.4. Note that dX is the linearisation of IdX : X → X viewed as a
morphism in the category of stable functions, so that we have IdX = dX ◦ !X .

On the other hand !X : X → !X is the co-Kleisli counterpart of Id!X : !X →ℓ

!X.

As usual the operation ! has a dual ? (read why not) defined by:

?X = (!X⊥)⊥

in which !X⊥ should be read !(X⊥). Contrarily to the additive and multiplica-
tive case, the web of ?X is not the web of !X:

Web: |?X| = Clfin(X
⊥) is the set of finite anticliques of X.

Coherence: x0 ˝?X x′0 iff there is a ∈ x0 and a′ ∈ x′0 such that a ˝X a′.

We end up this section with a review of the main properties of the exponen-
tials.

De Morgan: (!X)⊥ = ?X⊥, (?X)⊥ = !X⊥.

Weakening, contraction: There are two natural transformation giving !X
the structure of a commutative ⊗-comonoid:

wX : !X →ℓ 1 Trℓ(wX) = {(∅, ∗)}
cX : !X →ℓ !X ⊗ !X Trℓ(cX) = {(x, (x0, x1)), x0 ∪ x1 = x ⊏fin X}

and the dual transformations obtained by orthogonality giving ?X the
structure of a commutative `-monoid.
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Comonad: We have the following commuting diagrams expressing the fact that
the exponential is a comonad with associated natural transformations d
and p:

!X !!X

!!X !X

pX

pX ! dX

d!X

!X !!X

!!X !!!X

pX

pX ! pX

p!X

!X

!!X !Y Y

pX
Fℓ

!Fℓ dY

The last diagram is obtained by the co-Kleisli composition of F = Fℓ ◦ !X :
X → Y and IdY = dY ◦ !Y : Y → Y . Of course dual diagrams exists
expressing the fact that ? is a monad.

Exponential isomorphisms: These are the reasons of the terminology expo-
nential, the ! and the ? send the additives on the multiplicatives:

!(X & Y ) ≃ !X ⊗ !Y

!⊤ ≃ 1

?(X ⊕ Y ) ≃ ?X ` ?Y

?0 ≃ ⊥

5.5 Conclusion
As said above, coherent spaces were the first model of linear logic, actually
Girard designed linear logic after coherent spaces. Among other nice features
they form a ∗-autonomous category that is not compact closed, some say that
is non degenerated because in compact closed categories the ⊗ is equal to its
dual. Note however that the multiplicative neutrals ⊥ and 1 (not to speak
of the additive ones) are identical, and it is still a question to construct some
natural model of linear logic in which ⊥ ̸= 1 (related to the problem of finding
an explicit construction for the free ∗-autonomous category).

Despite their nice and simple structure they present some peculiarities that
makes them singular in the realm of models of linear logic. Here are two impor-
tant ones:

• The ! comonad is idempotent by which we mean that there is a linear
function !X⊗ !X →ℓ !X the linear trace of which is {((x0, x0), x0) ⊏fin X}
which is a left inverse of cX . This is unfortunate if one wants to keep the
intuition that linear logic is about resource consumption and in particular
that the contraction morphism should keep track of the number of times
a resource is used.

• The ! comonad is uniform, by which we mean that the web !X is made
of finite cliques as opposed to finite sets of points of X. This restricts
a function F : X → Y to expect an argument in Cl(X) thus made of
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coherent points, so to speak the argument has to answer uniformly to any
request F has. This might also seem unfortunate if one wants to model
non deterministic programs or probabilistic programs in which a same
input can give incoherent answers when requested several times.

Indeed other comonads are possible: in coherent spaces one can choose finite
multicliques, that is multisets of pairwise coherent points, as the web of !X; this
was proposed by Lafont in the early ages of linear logic and makes the comonad
free; it yields a somehow different co-Kleisli category in which functions can
differ as soon as they use their arguments a different number of times, a fact
that is not naturally expressible with stable functions, and that opens the way
to quantitative semantics.

Another possible generalization is to remove the coherence restriction, that
is taking finite multisets of points not necessarily pairwise coherent for the web
of !X. This is typically what is done in the sets and relations category and
its numerous derived non uniform models (see the non uniform coherent model
in section 3.3), that allowed among other things the discovery of differential
lambda-calculus.



160 CHAPTER 5. COH



Chapter 6

Scott

6.1 Scott semantics

. The relational model is infinitary1 in the sense that even a most simple for-
mula like !(1⊕ 1)⊸ 1⊕ 1 (the type of programs from booleans to booleans) is
interpreted as an infinite set (because this is already true of !(1⊕ 1)). This is
due to the fact that the interpretation takes into account all repeated uses of
the argument of the function, whereas only two values for this parameter are
possible. The situation is quite different in Girard’s original coherence spaces
model because !(1⊕ 1) is interpreted as a coherence space which has the cliques
of 1 ⊕ 1 as web, and there are only 3 such cliques. Therefore, in that model,
!(1⊕ 1)⊸ 1⊕ 1 is interpreted as a coherence space whose web has 6 elements.

A natural attempt to turn Rel into a finitary model is therefore to try
introduce an exponential !X such that !X = Pfin(X). This however does not
seem possible; at least the most natural attempt, which consists in copying
mutatis mutandis the definitions of Section 3.2, fails by lack of naturality of d.
A way to solve this problem consists in equipping the sets interpreting formulas
with a further preorder structure and interpreting proofs as downwards-closed
sets. The model we obtain in that way is actually a linear extension of the very
first denotational model, discovered by Scott and Strachey [ScottStrachey]:
the model of complete lattices and Scott-continuous functions.

We present this model now, trying to keep as tight as possible the connection
with the relational model of Section 3.2. This connection will be made more
explicit in Section 6.2.

A preorder is a pair S = (|S|,≤S) where |S| (the web of S) is a set (which can
be assumed to be at most countable) and ≤S is a transitive and reflexive relation
on |S| (it is important not to assume this relation to be an order relation). An
initial segment of S is a subset u of |S| such that

∀a ∈ u∀a′ ∈ |S| a′ ≤S a⇒ a′ ∈ u

1This is also true of its non-uniform coherent refinements.

161
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that is, which is downwards closed and we use I(S) for the set of these initial
segments. Observe that (I(S),⊆) is a complete lattice with lubs defined as
unions and glbs as intersections. Its least element is ∅ and its largest element is
|S|.

Given u ⊆ |S| we set ↓S u = {a′ ∈ |S| | ∃a ∈ u a′ ≤S a} which is the least
element of I(S) which contains u. Observe that I(S) is prime-algebraic, the
prime elements of I(S) being those of shape ↓S {a} where a ∈ |S|. It is crucial
to observe that several different preorders S can generate the same I(S) up to
iso.

Given a preorder S, the preorder S⊥ is defined as S⊥ = (|S|,≥S) (in other
terms it is the opposit of S) so that obviously S⊥⊥ = S. Given preorders S1 and
S2, the preorder S1⊗S2 is simply the product preorder: |S1 ⊗ S2| = |S1| × |S2|
and (a1, a2) ≤S1⊗S2

(b1, b2) if ai ≤Si
bi for i = 1, 2. Then we set S ⊸ T =

(S ⊗ T⊥)⊥ so that |S ⊸ T | = |S| × |T | and (a, b) ≤S⊸T (a′, b′) is b′ ≤T b and
a ≤S a′.

In that way we define a category ScottL whose objects are the preorders
and where ScottL(S, T ) = I(S ⊸ T ). The identity morphism is

IdS = {(a, a′) ∈ |S| × |S| | a′ ≤ a}
= ↓
S⊸S

{(a, a) | a ∈ |S|}

and composition is defined as in Rel (ordinary composition of relations); it
is easy to see that if s ∈ ScottL(S, T ) and t ∈ ScottL(T,U) then indeed
t s ∈ ScottL(S,U).

Let s ∈ ScottL(S, T ) and u ∈ I(S), then we set s · u = {b ∈ |T | | ∃a ∈
u (a, b) ∈ s} ∈ I(T ). The following lemma is quite easy to prove.

Lemma 6.1.1. The map fun(s) : I(S) → I(T ) defined by fun(s)(u) = s · u
commutes with arbitrary unions (we say that it is linear). Moreover any linear
map f : I(S) → I(T ) satisfies f = fun(s) for a unique s ∈ ScottL(S, T ) given
by s = {(a, b) ∈ |S| × |T | | b ∈ f(↓S {a})}. In particular, if s, s′ ∈ ScottL(S, T )
satisfy ∀u ∈ I(S) s · u = s′ · u, then s = s′.

Notice that an isomorphism in ScottL from S to T is not necessarily an
isomorphism between the preorders. For instance 1 and (N,=) are isomorphic
in ScottL (with iso {(∗, n) | n ∈ N}) but obviously not as preorders. So
a bijection θ : |S| → |T | such that ∀a, a′ ∈ |S| a ≤S a′ ⇔ θ(a) ≤T θ(a′)
will be called a strong isomorphism. Such a strong isomorphism θ induces an
isomorphism θ̂ = {(a, b) | b ≤T θ(a)} ∈ ScottL(S, T ) whose inverse (in ScottL)
is θ̂−1.

6.1.1 Multiplicative structure

The operation ⊗ defined above on preorders (together with the object 1 =
({∗},=)) can be extended to morphisms (same definition as for the tensor of
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morphisms in Rel), turning ScottL into a symmetric monoidal closed category2,
the object of linear morphisms from S to T being S ⊸ T equipped with a linear
evaluation morphism ev ∈ ScottL((S ⊸ T )⊗ S, T ) defined as

ev = {(((a, b), a′), b′) | b′ ≤T b and a ≤S a′} .

The map τ : I(S1)× I(S2)→ I(S1 ⊗ S2) defined by τ(u1, u2) = u1 ⊗ u2 =
u1 × u2 is bilinear in the sense that, given u2 it is linear in u1 and conversely.
It has the following universal property.

Lemma 6.1.2. Given any bilinear f : I(S1) × I(S2) → I(T ), there is exactly
one s ∈ ScottL(S1 ⊗ S2, T ) such that

∀u1 ∈ I(S1), u2 ∈ I(S2) f(u1, u2) = s · (u1 ⊗ u2) ,

which is given by s = {((a1, a2), b) | b ∈ f(↓S1
{a1}, ↓S2

{a2})}. In particular,
if s, s′ ∈ ScottL(S1 ⊗ S2, T ) satisfy ∀u1 ∈ I(S1), u2 ∈ I(S2) s · (u1 ⊗ u2) =
s′ · (u1 ⊗ u2), then s = s′.

This SMCC is actually *-autonomous with dualizing object ⊥ = 1 and dual
of S isomorphic to S⊥ (the opposit of S). Given s ∈ ScottL(S, T ), s⊥ ∈
ScottL(T⊥, S⊥) is just the usual relational transpose of s, s⊥ = {(b, a) | (a, b) ∈
s}.

6.1.2 Additive structure
The category ScottL is cartesian with terminal object ⊤ = (∅, ∅) and cartesian
product of S1 and S2 the object S1 & S2 such that |S1 & S2| = {1} × |S1| ∪
{2} × |S2| and (i, a) ≤S1&S2

(i′, a′) if i = i′ and a ≤Si
a′. The projections

are pri = {((i, a), a′) | a′ ≤Si
a} for i = 1, 2. Given si ∈ ScottL(T, Si) for

i = 1, 2, the pairing ⟨s1, s2⟩ ∈ ScottL(T, S1 & S2) is defined as {(b, (i, a)) |
i ∈ {1, 2} and (b, a) ∈ si} exactly as in Rel. By *-autonomy ScottL is also
co-cartesian, with initial object 0 = ⊤ and coproduct S1 ⊕ S2 = S1 & S2. The
associated injections and co-pairing are easily retreived from the projections and
the pairing of &.

6.1.3 Exponential structure
Last we come to the exponential which was the main motivation for this model.
We take |!sS| =Mfin(|S|) with preorder defined by m ≤!sS m

′ if ∀a ∈ m∃a′ ∈
m′ a ≤S a′. Notice that if we had taken |!sS| = Mfin(|S|) with the same
definition of the preorder relation, we would have obtained a lattice I(!sS)
isomorphic to that associated with our multiset-based definition, that we prefer
in view of Section 6.2. Given s ∈ ScottL(S, T ), we define !ss ⊆ |!sS ⊸ !sT | as

!ss = {(m, p) ∈Mfin(|S|)×Mfin(|T |) | ∀b ∈ p∃a ∈ m (a, b) ∈ s}
2The associated isomorphisms are strong.



164 CHAPTER 6. SCOTT

then is is easy to prove that !ss ∈ ScottL(!sS, !sT ). Given u ∈ I(S), let u! ∈
I(!sS) and let π : I(S) → I(!sS) be defined by π(u) = u!. It is easy to prove
that π is Scott continuous. Moreover, it enjoys the following universal property.

Lemma 6.1.3. Given any Scott continuous function3 I(S) → I(T ), there is
exactly one s ∈ ScottL(!sS, T ) such that ∀u ∈ I(S) f(u) = s·u!. This morphism
s is given by s = {([a1, . . . , an], b) | b ∈ f(↓S {a1, . . . , an})}. In particular, if
s, s′ ∈ ScottL(!sS, T ) satisfy ∀u ∈ I(S) s · u! = s′ · u!, then s = s′.

It is easy to check that !ss · u! = (s · u)!. A consequence of this equa-
tion and of Lemma 6.1.3 is that !s_ is a functor. Its comonadic structure is
given by dsS = {(m, a′) | ∃a ∈ m a′ ≤S a} ∈ ScottL(!sS, S) which satisfies
∀u ∈ I(S) dsS · u! = u. This equation, together with Lemma 6.1.3, allows
to prove easily that ds is natural. The comultiplication of the comonad is
psS = {(m, [m1, . . . ,mn]) | ∀i mi ≤!sS m} ∈ ScottL(!sS, !s!sS) which is eas-
ily seen to satisfy ∀u ∈ I(S) psS · u! = u!!. Again, the naturality of ps and the
three required comonad commutative diagrams easily follow from that equation
and from Lemma 6.1.3.

The Seely monoidal structure (ms,0,ms,2) is defined by ms,0 = {(∗, [])} ∈
ScottL(1, !s⊤) and ms,2

S1,S2
= {((m1,m2), 1 ·m′

1 + 2 ·m′
2) | m′

i ≤!sS mi for i =
1, 2} = θ̂ ∈ ScottL(!sS1⊗!sS2, !s(S1 & S2)) where θ : |!sS1 ⊗ !sS2| → |!s(S1 & S2)|
is the strong iso defined by θ(m1,m2) = 1 ·m1 + 2 ·m2.

The Kleisli category ScottL!s has preorders as objects and can be described
as follows (thanks to Lemma 6.1.3 and to the equations satsfied by ds and ps): a
morphism from S to T is a Scott continuous function I(S)→ I(T ), composition
is the ordinary composition of functions. It is cartesian closed with ⊤ as final
object (indeed I(⊤) = {∅}), S1 & S2 as cartesian product of S1 and S2 (and
indeed I(S1 & S2) ≃ I(S1) × I(S1)) and S ⇒ T = !sS ⊸ T as object of
morphisms from S to T (and indeed I(S ⇒ T ) is isomorphic to the lattice
of Scott continuous functions I(S) → I(T ) ordered under the usual pointwise
order) and evaluation function defined as usual. So we can identify ScottL!s

with the usual Scott model of (typed) lambda-calculus, PCF etc.
The main motivation for this construction was to build a “finitary” model

on top of Rel. Let us explain in what sense this goal has been reached. Let us
say that an object S of ScottL is finite if I(S) is a finite set.

Proposition 6.1.4. The preorders 1 and ⊤ are finite. If S is finite then S⊥

and !sS are finite. If S1 and S2 are finite so are S1 ⊗ S2 and S1 & S2. In
particular, if S and T are finite, so are S ⊸ T and S ⇒ T .

Proof. Since I(S1 & S2) ≃ I(S1)×I(S2), the finiteness of the Si’s implies that
of S1 & S2. Next, we know by Lemma 6.1.1 that I(S ⊸ T ) is isomorphic to
the space of linear functions I(S) → I(T ), hence if S and T are finite so is
S ⊸ T . Taking T = ⊥, we see that the finiteness of S implies that of S⊥. Since
S1 ⊗ S2 = (S1 ⊸ S⊥

2 )⊥, it follows that the finiteness of S1 and S2 implies that
of S1 ⊗ S2. Next, by Lemma 6.1.3, the finiteness of S and T implies that of

3Remember that this means that f is monotonic and commutes with directed unions.
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S ⇒ T . Therefore, since !sS is (strongly) isomorphic to (S ⇒ ⊥)⊥ it follows
that the finiteness of S implies that of !sS.

Notice that the original coherence space model of Girard [Girard] has a
quite similar finiteness property (this is also true of our hypercoherence space
model [Ehrhard]). One main feature of the Scott model is that it combines
this finiteness with a strong form of may non-determinism which is simply
implemented by the operation of lattices interpreting types (and is not available
in coherence and hypercoherence spaces whose main purpose is precisely to
reject non-determinism). This might be quite a useful feature especially for
using denotational models in program verification.

6.2 Relation with the relational model
One main difference between the LL models (Rel, !_) and (ScottL, !s_) is that
the Kleisli category of the latter is well-pointed (by Lemma 6.1.3) whereas the
Kleisli category of the former is not. We proved in [Ehrhard] that the latter is
the “extensional collapse” of the former. In the hierarchy of simple types based
e.g. on a standard interpretation of integers, such a result can easily be proved
using a syntactic trick4 which however does not provide informations on the
structure of this collapse and is not easily extendable to the whosle LL.

6.2.1 A duality on preorders
In contrast, a careful LL-based analysis of the collapse led to a surprising new
duality which is the central concept of [Ehrhard]: let S be a preorder and let
u, u′ ⊆ |S|, let us write u ⊥[S] u′ if

(↓
S
u) ∩ u′ ̸= ∅ ⇒ u ∩ u′ ̸= ∅

that is, u ⊥[S] u′ means that u′ is not able to separate u from its downwards
closure in S. This definition is symmetric in the following sense (the proof of
these equivalences is quite easy)::

u ⊥[S] u′ ⇔ ((↓
S
u) ∩ ( ↓

S⊥
u′) ̸= ∅ ⇒ u ∩ u′ ̸= ∅)⇔ u′ ⊥[S⊥] u .

Given D ⊆ P(|S|), we define

D⊥[S] = {u′ ⊆ |S| | ∀u ∈ D u ⊥[S] u′} .

Observe that the following usual properties hold:

• D ⊆ D′ ⇒ D′⊥[S] ⊆ D⊥[S]

4Very roughly: in a may non-deterministic extension of PCF, all compact element in the
Scott hierarchy are definable, and this language can be interpreted in the relational hierarchy.
Then a standard “logical relation lemma” allows to prove the announced property.
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• D ⊆ D⊥[S]⊥[S⊥]

from which it follows that D⊥[S] = D⊥[S]⊥[S⊥]⊥[S].
The following result is a simple illustration on how this notion of “orthogo-

nality” is used for proving properties of sets equal to their biorthogonal.

Lemma 6.2.1. If D = D⊥[S]⊥[S⊥] (or, equivalently, if D = D′⊥[S⊥] for some
D′ ⊆ P(|E|)) then

• I(S) ⊆ D (in particular ∅, |S| ∈ D)

• D is closed under arbitrary unions.

Proof. If u ∈ I(S) then u ⊥[S] u′ holds for all u′ ⊆ |S|, whence the first
property. Towards the second one, let U be a subset of D. We prove that
∪U ∈ D = D′⊥[S⊥]. Let u′ ∈ D′, we have to prove that u′ ⊥[S⊥] ∪U , that is
∪U ⊥[S] u′. So assume that ↓S (∪U) ∩ u′ ̸= ∅. Since ↓S (∪U) = ∪u∈U ↓S u,
there exists u ∈ U such that ↓S u ∩ u′ ̸= ∅, and we have u ∩ u′ ̸= ∅ because
u ∈ D, it follows that ∪U∩u′ ̸= ∅ as contended. Notice that it is not necessarily
true that ∩U ∈ D.

6.2.2 The category of preorders with projections

We build a model of LL based on these central notions. Let us call preorder with
projection (PP for short) any pair E = (E,D(E)) where E is a preorder (the
carrier of E) and D(E) (the extensionality of E) is a subset of P(|E|) such that

D(E) = D(E)
⊥[E]⊥[E⊥]

.

Then we can define a relation πE ⊆ P(|E|) × I(E) as follows (using letters
u, v . . . for arbitrary subsets of |E| and letters r, s . . . for initial segments of E):

u πE r if u ∈ D(E) and ↓
E
u = r

This relation is a partial function P(|E|)→ I(E) and as such, it defines a partial
equivalence relation εE on P(|E|) given explicitely by

u εE v if u, v ∈ D(E) and ↓
E
u = ↓

E
v .

The intuition behind such an object E is as follows: E is the interpretation of
a formula A of LL in ScottL and |E| is the interpretation of the same formula5

A in Rel. Then u εE v means that u and v are extensionally equivalent, and
u πE r means that r is the “extensionalization” of u. The definitions below
implement these intuitions.

5This identification is the main reason for which we use multisets and not sets in the
definition of !sS.
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We define E⊥ = (E⊥,D(E)
⊥[E]

) so that by definition E⊥⊥ = E. Next,
given PP’s Ei for i = 1, 2, we define E1 ⊗ E2 by E1 ⊗ E2 = E1 ⊗ E2 and
D(E1⊗E2) = {u1 ⊗ u2 | ui ∈ D(Ei) for i = 1, 2}⊥[E1⊗E2] (remember that we use
u1⊗u2 = u1×u2). Next, given PP’s E and F , we define E ⊸ F = (E ⊸ F⊥)⊥.

Lemma 6.2.2. Let w ∈ P(|E ⊸ F |), the following properties are equivalent:

1. w ∈ D(E ⊸ F )

2. for all u ∈ D(E) one has w · u ∈ D(F ) and w · ↓E u ⊆ ↓F (w · u)

3. for all u ∈ D(E) one has w · u ∈ D(F ) and ↓E⊸F w · ↓E u ⊆ ↓F (w · u)

4. for all u ∈ D(E) one has w · u ∈ D(F ) and ↓E⊸F w · ↓E u = ↓F (w · u)

5. there exists t ∈ I(E ⊸ F ) such that for all u ∈ P(|E|) and r ∈ ↓E, if
u πE r then w · u πF t · r.

Proof. The implication (3)⇒(4) is due to the fact that ↓E⊸F w·↓E u ⊇ ↓F (w · u)
always holds. The implication (2)⇒(3) is due to the fact that ↓E⊸F w · ↓E u =
↓F (w · ↓E u). The equivalence (4)⇔(5) is a direct application of the defini-
tions of πE , πF and πE⊸F . Of course when (4) holds the t whose existence is
stipulated by (5) is ↓E⊸F w.

So assume (1) and let us prove (2). Let u ∈ D(E). We prove first that w ·u ∈
D(F ) = D(F )⊥[F ]⊥[F⊥] so let v′ ∈ D(F )⊥[F ] and let us prove that w · u ⊥[F ] v′.
So assume that ↓F (w · u)∩v′ ̸= ∅, that is w ·u∩↓F⊥ v′ ̸= ∅. This is equivalent to
w∩ (u×↓F⊥ v′) and therefore implies w∩↓E⊗F⊥ (u⊗ v′) ̸= ∅. Our assumption
on w implies w ∩ (u⊗ v′) ̸= ∅ and this finally implies w · u ∩ v′ ̸= ∅. Therefore
w ·u ⊥[F ] v′ as contended. Next we must prove that w · ↓E u ⊆ ↓F (w · u) so let
b ∈ w · ↓E u. We have ↓F⊥ {b} ∈ D(F )⊥[F ] and w · ↓E u∩↓F⊥ {b} ≠ ∅. Hence, by
the same reasoning as above (using our assumption on w), w · u ∩ ↓F⊥ {b} ≠ ∅,
that is b ∈ ↓F (w · u).

Now assume (2) and let us prove (1) so assume that w satisfies this latter
condition. Let u ∈ D(E) and v′ ∈ D(F )⊥[F⊥] and assume that ↓E⊸F w ∩ (u ⊗
v′) ̸= ∅, that is w ∩ (↓E u× ↓F⊥ v′) ̸= ∅. This implies w · ↓E u ∩ ↓F⊥ v′ ̸= ∅. By
our assumption (2) (second part), this implies ↓F (w · u) ∩ ↓F⊥ v′ ̸= ∅, that is
↓F (w · u) ∩ v′ ̸= ∅ and hence by our assumption (2) again (first part), we get
(w · u) ∩ v′ ̸= ∅ which implies w ∩ (u⊗ v′) ̸= ∅.

6.2.2.1 Multiplicative structure

From this lemma, it results that one can define a category PoProj whose objects
are the PP’s and PoProj(E,F ) = D(E ⊸ F ) which has the diagonal relation
⊆ |E| × |E| as identity E → E and composition defined as in Rel.

Similarly one proves the following.

Lemma 6.2.3. Let E1, E2 and F be PP’s and let w ⊆ |E1 ⊗ E2⊸ F |. The
following properties are equivalent
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• w ∈ D(E1 ⊗ E2⊸ F );

• for all u1 ∈ D(E1), u2 ∈ D(E2), one has w · (u1 ⊗ u2) ∈ D(F ) and w ·
(↓E1

u1 ⊗ ↓E2
u2) ⊆ ↓F (w · (u1 ⊗ u2)).

Using this lemma, we can establish associativity of the tensor product (or
more precisely that the category PoProj is monoidal when equipped with this
tensor product, and structural isomorphisms defined as in Rel). This requires
two auxiliary properties.

Lemma 6.2.4. Let E and F be PP’s and θ : |E| → |F | be a strong isomorphism.
If ∀u ∈ D(E) θ · u ∈ D(F ) then θ ∈ PoProj(E,F ).

This is an immediate consequence of Lemma 6.2.2 and of the fact that θ is
a strong isomorphism.

Lemma 6.2.5. Let E, F and G be PP’s, then the bijection α : |G⊗ E ⊸ F | be-
longs to PoProj((G⊗ E ⊸ F )→ (G⊸ (E ⊸ F ))) and α−1 ∈ PoProj((G⊸
(E ⊸ F ))→ (G⊗ E ⊸ F )).

Proof. The idea is to apply (several times) Lemma 6.2.2. Let t ∈ D(G⊗ E ⊸
F ), we prove that α ·t ∈ D(G⊸ (E ⊸ F )). Let w ∈ D(G) and let us prove that
(α · t) · w ∈ D(E ⊸ F ). So let u ∈ D(E), we prove that ((α · t) · w) · u ∈ D(F )
which results from our assumption on w and from the fact that ((α · t) · w) ·u =
t · (w ⊗ u). Then we must prove that ((α · t) · w) · ↓E u ⊆ ↓F (((α · t) · w) · u),
which results from

t · (w ⊗ ↓
E
u) ⊆ t · (↓

G
w ⊗ ↓

E
u)

= t · ↓
G⊗E

(w ⊗ u)

⊆ ↓
F
(t · (w ⊗ u)) .

This ends the proof that (α · t) · w ∈ D(E ⊸ F ). We must prove next that
(α · t) · ↓G w ⊆ ↓E⊸F ((α · t) · w). Let a ∈ |E| and let u = ↓E {a}, remember
that u ∈ D(E). It is sufficient to prove that

((α · t) · ↓
G
w) · u ⊆ ( ↓

E⊸F
((α · t) · w)) · u . (6.1)

Indeed, assume (6.1) and assume (a, b) ∈ (α · t) · ↓G w for some b ∈ |F |, then we
have b ∈ ((α · t) · ↓G w) · u and hence b ∈ s · ↓E {a} where s = ↓E⊸F ((α · t) · w)
which by Lemma 6.1.1 implies (a, b) ∈ s, proving our contention. So we
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prove (6.1):

((α · t) · ↓
G
w) · u = t · (↓

G
w ⊗ u)

= t · ↓
G⊗E

(w ⊗ u)

⊆ ↓
F
(t · (w ⊗ u)) by our assumption about t

= ↓
F
(((α · t) · w) · u)

= ↓
F
( ↓
E⊸F

((α · t) · w) · u)

⊆ ↓
E⊸F

((α · t) · w) · u

because this latter set is downwards closed in F . This ends the proof that
α ∈ PoProj((G⊗ E ⊸ F ) → (G ⊸ (E ⊸ F ))) and it remains to prove that
α−1 ∈ PoProj((G ⊸ (E ⊸ F )) → (G⊗ E ⊸ F )); the proof is similar (and
simpler).

Then, given PP’s E1, E2 and E3, we have just seen that α is a strong iso
((E1 ⊗ E2)⊗E3)

⊥ → (E1⊗(E2 ⊗ E3))
⊥, and hence it is a strong iso (E1 ⊗ E2)⊗

E3 → E1⊗ (E2 ⊗ E3) thus establishing the monoidal structure of PoProj. The
fact that σ is a strong iso E1 ⊗ E2 → E2 ⊗ E1 is an immediate consequence of
Lemma 6.2.4.

6.2.2.2 Additive structure
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Chapter 7

Geometry of Interaction

7.1 A brief and partial history of the geometry
of interaction

Originally the geometry of interaction was a research program proposed by
Girard [18] aiming at a modelisation of cut-elimination by some mathematical
device, as opposed to the syntactical approach introduced by Gentzen in natural
deduction or sequent calculus. Girard soon came with a proposition [11] in which
cut-elimination was represented by the so-called execution formula:

Ex(σ, π) = (1− σ2)π
∑
n≥0

(σπ)n(1− σ2)

where π and σ are operators representing respectively a linear logic proof in
the MELL fragment and its cut rules. The (1 − σ2) part is a projector on
the subspace associated to the conclusions of the proof, so that the formula
is computing the interaction between the proof and its cuts, projecting the
result on its conclusions. The main theorem of this initial version of the GoI
established the strong convergence of the sum when applied to interpretations
of typed proofs, which may be viewed as the GoI counterpart of the strong
normalisation theorem for system F .

This initial interpretation has been revisited and reformulated in many dif-
ferent ways by various authors. In the first place Danos and Regnier showed
that the GoI could be viewed more combinatorialy as computing an invariant of
cut elimination: persistent paths so named because they are the paths that
are consistently reduced along the cut elimination [9]; this lead to an interpreta-
tion of proof nets as some kind of automaton, called the IAM for Interaction
Abstract Machine in which a token enters the proof by one of its conclusion
and is routed and acted upon by transitions associated to each logical rules
eventually reaching an other conclusion [10]. The trajectory followed by the
token is a path called an execution path (or a regular path) and it is shown
that the set of execution paths is the same as the set of persistent paths.

173
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One can recover Girard’s interpretation by viewing the IAM automaton
as an operator acting on the Hilbert space generated by tokens; the strong
convergence of the execution formula (in the typed case) is reformulated into
the claim that there are a finite number of persistent/execution paths.

The interpretation has been further extended to the untyped case, follow-
ing a suggestion of Girard [12], Malacaria and Regnier showed that the execu-
tion formula when applied to pure lambda-terms was still converging in a weak
sense [27]; this weak convergence also has a combinatorial counterpart in terms
of paths, namely that any persistent cycle has to be opened by the reduction.

The geometry of interaction was shown to be strongly related to shar-
ing reduction by Gonthier-Abadi-Lévy [20] who designed an interpretation of
lambda-terms into so called sharing graphs that merged together ideas com-
ing from the GoI and from Lamping’s implementation of beta-reduction [24] as
a first concrete realisation of Lévy’s optimal reduction [25, 26]. The correctness
of the sharing reduction w.r.t. optimal reduction was shown by using the invari-
ance of consistent paths, a reformulation of execution paths in the sharing
graph formalism.

The work on optimal reduction was also carried by Asperti and Laneve who
showed that Lévy’s labels that were used to define families of redexes in (the
retracts of) a lambda-term, could be viewed as particular paths in the graphical
form of the lambda-term satisfying a geometrical condition that they called
legality [3]. Of course legal paths were immediately recognised as another form
of execution paths [4].

It was also quickly realised that the execution formula could be understood
as expressing the interaction between strategies in game semantics. In particular
in the Abramsky-Jagadeesan-Malacaria game model of PCF [2] the history free
strategy interpreting a proof/term can be viewed as an operator acting on the
space/game interpreting the type; this operator happens to be the geometry of
interaction interpretation of the proof [8].

Last but not least Girard’s GoI interpretation was further abstracted and
shown to be a particular instance of an interpretation of proofs in traced monoidal
categories [23], today refered as a GoI situation [1, 21]: the trace is the cor-
rect categorical way to describe the execution formula, i.e., the travel of a token
along an execution path, i.e., the composition of strategies.

In subsequent work the geometry of interaction for MELL was further ex-
tended by Girard to additive connectives of linear logic [14], and finally com-
pletely reformulated using a new approach based on Von Neuman algebras [15].
This last version has also a combinatorial counterpart that was explicited by
Seiller [31].

In this book we will however stick to the MELL fragment of linear logic, as
this is the fragment that permits encoding of full lambda-calculus.

7.1.1 Straight paths

We will consider a particular class of paths that is suitable for out study. In-
formally straight paths are paths that may change direction only in axiom
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and cut nodes, and that never bounce back. However, due to the combinatorial
complexity of path reduction, we will have to add some technical conditions
that can be ignored at first read.

We will first assume that, up to eta-expansion, proof nets don’t contain
exponential axioms, that is axioms with conclusions ?A⊥ and !A.

A straight path in a proof net R is a path γ = (n0, (ei)1≤i≤N ) such that for
any 1 ≤ i < N :

• if ei = a− and ei+1 = a′+ then a and a′ are the two distinct conclusions
of an ax -node.

• if ei = a+ and ei+1 = a′− then a and a′ are the two distinct premises of
a cut-node.

Note that straight paths don’t form a category as the composition of two straight
paths may not be straight.

We will further ask a technical but light condition on straight paths, namely
that they neither start downardly, nor end upwardly in the middle of an expo-
nential tree:

• if n0 is a ?-node and e1 = a+ (where a is the conclusion arrow of n0) then
n0 is a d -node;

• symmetrically if nN is a ?-node and eN = a− (where a is the conclusion
arrow of nN ) then nN is a d -node.

This condition is the reason why we don’t want exponential axioms in proof
nets, with exponential axioms a path could start downardly or end upwardly in
an exponential axiom, which could lead by cut elimination to the middle of an
exponential branch. It is light because a straight path can always be extended
(possibly in multiple ways) so as to satisfy it. We will see in the proof of the
special cut lemma what it is useful to.

It is immediate that any residual of a straight path by any reduction is
straight but we can be a bit more precise (this can be skipped at first read).

A straight path may uniquely be written in the form γ = γsγaγt where γs
and γt are (possibly empty) down-maximal descent subpaths, thus cross no cut.
We call γa the active part of γ, γs and γt the source and target passive parts
of γ.

If γ has a residual γ′ by a one step non axiom reduction or by an axiom
reduction such that the non cut conclusion of the axiom (the a0 arrow in the
axiom cut case p. ??) is not the source of γs or γt then it is readily seen that
γ′ = γ′sγ

′
aγ

′
t where γ′a, the active part of γ′, is residual of γa and γ′s and γ′t are

residuals of γs and γt.
If γ has a residual γ′ by an axiom reduction such that the non cut conclusion

of the axiom is source of γs then, assuming the notations of the axiom cut ??,
γa = a+c a

−
1 δsδa where δs is the maximal descent subpath of γ targeted on the

source node of a1 so that γ = γsa
+
c a

−
1 δsδaγt. In this case γ′ = γ′s δ

′
sδ

′
aγ

′
t =
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δ′sγ
′
sδ

′
aγ

′
t where δ′a, the active part of γ′, is a residual of δa, and γ′s, δ′s and γ′t

are residuals of γs, δs and γt. In particular δ′sδ′a is a residual of γa but δ′s is no
longer active, so to speak it has switched from the active part of γ to the source
passive part of γ′.

The case where the non cut conclusion of the axiom is source of γt is sym-
metric. We thus have:

Lemma 7.1.1. In any residual γ′ of a path γ, the active part of γ′ is a subpath
(that may be a proper subpath) of a residual of the active part of γ.

As a conséquence if Γ is a set of straight paths and Γ′ is the set of active parts
of elements of Γ then any reduction of Γ is a reduction of Γ′ and conversely.

7.1.2 Persistent paths
From now on all paths considered will be assumed to be straight. A (straight)
path γ in R is persistent if for any sequence of non-weakening reductions ρ of
R, it has at least one residual in the ρ-retract of R.

A path that crosses only weakening cuts is normal. If γ is normal then it
has some residual by any non-weakening reduction step and all its residuals are
normal. Thus a normal path is persistent.

Theorem 7.1.2 (Strong normalisation of path reduction). If γ is a finite
straight path, then all sequences of reductions of γ are finite, that is lead to
a (possibly empty) set of normal residuals.

We postpone the proof to the next section but immediately state an impor-
tant corollary:

Corollary 7.1.3. A path γ is persistent iff it admits a non-weakening reduction
leading to a normal residual.

Proof. If we have a reduction yielding a normal residual of γ, since a normal
path have normal residuals by any reduction, by confluence we see that γ has
at least one residual by any non weakening reduction, thus γ is persistent.

Conversely if γ is persistent then let us reduce it (by non weakening cuts),
the reduction being finite we must stop at some point and since γ is persistent
it has some residual γ′ at this point. But γ′ is normal, otherwise it would
cross some non weakening cut contradicting the fact that the reduction of γ is
finished.

Remark 7.1.4 (Why straight paths?). Assuming the notations of the multiplica-
tive reduction p. ?? let γ be the bouncing (thus non straight) path γ = a+0 a

−
1 .

Then γ has no residual in the retract, thus γ is non persistent. Similar remark
apply to γ = a+0 a

−
1 in the contraction reduction p. ??. So a non straight path

bouncing on a node that is immediately premise of a cut is clealy non persistent.
This is not enough to conclude that any bouncing path is not persistent, as the
bouncing node could never be premise of a cut, but it is a hint that a bouncing
path is morally not persistent. In other terms bouncing paths are not good
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candidates for a reduction invariant. This is one main reason why we don’t
consider them and restrict to straight paths.

7.1.3 The special cut lemma
Given a straight path γ in a proof net R, a cut c is special for γ if:

• c is an exponential cut between a non weakening ?-node and a !-node
associated with a box b′ (so named for consistency with the notations
used in cut elimination steps p. ??);

• γ crosses c;

• the active part of γ contains no (premise or conclusion of an) auxiliary
door of b′. Equivalently γ doesn’t cross any cut located below an auxiliary
door of b′, that is γ has no subpath of the form γ0a

−
c′ where γ0 is a descent

path starting from an auxiliary door of b′ and ending on a cut c′ and ac′

is the premise of c′ that don’t belong to γ0.

Therefore γ is bound to enter and leave the box b′ only by its principal door,
except in two possible cases:

1. the first time γ enters b′ may be by an auxiliary door but in this case γ
can be decomposed into γ = γ0γ1γ2 where γ0 is a descent path from an
auxiliary door p′ of b′ and γ1 is a path contained in b′, sourced on p′ and
targeted on the principal door of b′;

2. the last time γ exits b′ may be by an auxiliary door, which is symmetric
to the preceding case.

Also note that if γ first enters b′ for the first time by crossing the cut c
(or symetrically leaves b′ for the last time by crossing the cut c) our light
condition on straight paths insures that it has visited (or that it will visit) the
full exponential branch before (after) reaching c.

Lemma 7.1.5 (Special cut lemma). Let R be a proof net containing only ex-
ponential cuts and γ a straight nonnormal path. Then there is a cut c in R that
is special for γ.

Furthermore γ has at most one residual by the one step reduction of c, 0 if
γ exchanges the premises of c, 1 otherwise. If γ′ ∈ Resc(γ) is the residual of γ
then the length of its active part is strictly less than the length of the active part
of γ.

Proof (sketchy). The existence is proved by induction on R. If R is obtained
from R0 by adding a `, c, d or ! node (associated to a box) then the result
comes by induction on R0 and the fact that special cut for γ in R0 is still special
for γ in R. If R = R0 ⊗ R1 then as γ is straight it lies entirery in R0 or R1

and the result comes again by induction hypothesis. Similarly if R = R0 cR1

where c is a cut that is not crossed by γ.
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So we are left with the case where R = R0 c1R1 where c1 is an exponential
cut crossed by γ. Let us call b1 the box (the principal door of which is) premise
of c1. If c1 is not special for γ then there is an exponential cut c2 lying below an
auxiliary door of b1 and crossed by γ. Let us call b2 the box premise of c2; we
note that b2 cannot contain b1 otherwise it would also contain c1 contradicting
the fact that R = R0 c1R1 (which entails in particular that c1 is in no box at
all). From which we deduce that b1 and b2 are disjoint and that c2 is distinct
from c1. If c2 is not special for γ then we iterate the process and get a sequence
of cuts c1, c2, ... and a sequence of boxes b1, b2, ... such that (the principal
door of) bk is premise of ck, bj and bk are disjoint, cj and ck are distinct for
j < k, ck is crossed by γ and ck+1 is a cut below some auxiliary door of bk.
This sequence must be finite since R is finite thus ends on a cn which is special
for γ.

For the at most one assertion the only case of interest is when c is a c-cut,
because no other type of cut may duplicate a path. Only the subpaths of γ
that are contained in b′ can be duplicated but by the special cut assumption all
these subpaths are sourced and/or targeted on the principal door of b′. Also,
thanks to our light condition on straight paths, all the subpaths of γ crossing c
also visit an entire exponential branch premise of c, in particular they visit one
or the other of the premise of the contraction so that they may have only one
residual.

Finally the length decreasing assumption is consequence of the fact that, in
any type of cut, the ? premise of the cut c has been removed in the residual of
γ (in the case of the dereliction cut, also the ! premise has been removed). Note
that somme new nodes and edges may have been added on the auxiliary doors of
(the residuals of) b′ thus increasing the length of γ, which is the precise reason
why we consider only the active part of γ: thanks to the special cut assumption
only the passive parts of γ may cross the auxiliary doors of b′ so that the active
part is not affected by the additional edges and nodes.

The special cut lemma will be used in various context. Typically it shows
the strong normalisation of path reduction.

Corollary 7.1.6 (Strong normalization of path reduction). Any reduction of a
straight path γ terminates yielding a set of normal residuals (possibly empty if
γ is not persistent).

Proof. By the special cut lemma one deduces that given a straight path γ there
is a reduction sequence of γ that at each step chooses either a multiplicative
or axiom cut crossed by γ if there is one, either a special cut for γ, the lemma
insuring the existence of such a cut in this case. Such a reduction will be called
a special reduction of the path γ. Any step during a special reduction of
γ strictly decreases the active part of γ thus any special reduction of γ must
terminate.

We therefore get a non weakening reduction that terminates. The confluence
for non weakening reductions entails by a standard argument that there cannot
be an infinite non weakening reduction of γ.
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7.2 An algebraic caracterisation of persistent paths

In this section we will present a purely syntactical device, the dynamic alge-
bra presented by generators and relations, and show that, viewed as a simple
rewriting system, it can be used to caracterize persistent paths in a proof net. In
the next section we will give some models of the dynamic algebra, interpreting
the elements as transitions on some set of states, and show how this builds an
interpretation of proof nets as some kind of (reversible) automaton, or equiv-
alently as some matrices (operators) acting of the state space, thus giving an
account to Girard’s execution formula. This will also help us to see how the
execution formula is related to composition of strategies in game semantics, and
more generally to trace in traced monoidal categories.

7.2.1 The dynamic algebra Λ∗

The dynamic algebra Λ∗ is the first order equational theory given below. We
will use the letters u, v, w for the closed terms of Λ∗, x and y for the constants
(also called the coefficients).

First order signature: a set of constant and function symbols:

• The signature of a (noncommutative) monoid with zero: a binary compo-
sition symbol ., a constant 1 and a constant 0.

• a unary function symbol ∗ that will be denoted in exponent: ∗(u) = u∗.

• A unary function symbol !.

• Six constant symbols: the multiplicative coefficients p and q, the exponen-
tial coefficients d, r, s and t.

Equations: when dealing with closed Λ∗-terms, in order to keep notations
light and unless explicitely mentionned otherwise, we will write u = v for Λ∗ ⊢
u = v.

But associativity which has a special reading all the axiom equations of Λ∗

are oriented from left to right so as to be easily seen as a rewriting system. The
first set of equations is the structural set :

Monoid equations: composition is associative, formally .(.(u, v), w) = .(u, .(v, w)).
For this reason we will write .(u, v) = uv; we come back on this below.

The constant 1 is neutral for composition: u1 = 1u = u.

The constant 0 is absorbant for composition: u0 = 0u = 0.

Involutive antimorphism: (u∗)∗ = u, (uv)∗ = v∗u∗, 1∗ = 1, 0∗ = 0.

Box morphism: !(u)!(v) = !(uv), !(1) = 1, !(0) = 0, !(u)∗ = !(u∗).
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When two closed terms are provably equal using only the structural set of
equations we will say that they are structurally equal. Structural equality is
readily seen to be decidable because all the above equations when oriented from
left to right form a confluent terminating rewriting system.

Composition gives Λ∗ the structure of a monoid which we acknowledged by
using the notation uv for .(u, v). More generally we will consider terms of Λ∗

up to monoid equations (neutral and associativity) which will be emphasized
by calling them words and by identifying composition with word concatenation.
Thus, up to the involution and box morphism, a Λ∗ word is a finite list of
coefficients, dual of coefficients and ! closed terms.

The second set of equations is the dynamic set :

Multiplicative anihilations: p∗p = q∗q = 1, p∗q = q∗p = 0.

Exponential anihilations: r∗r = s∗s = 1, r∗s = s∗r = 0.

Derelection commutations: !(u)d = du, d∗!(u) = ud∗.

Contraction commutations: !(u)x = x!(u), x∗!(u) = !(u)x∗ for x = r, s.

Auxiliary commutations: !(u)t = t!2(u), t∗!(u) = !2(u)t∗ where !2(u) stands for
!(!(u)).

Remark 7.2.1 (Λ∗ as a rewriting system on words). The dual forms of the
anihilation or commutation equations are consequence of the others thanks to
the involution equations. For example q∗p = q∗(p∗)∗ = (p∗q)∗ = 0∗ = 0 and
d∗!(u) = d∗(!(u)∗)∗ = (!(u)∗d)∗ = (!(u∗)d)∗ = (du∗)∗ = (u∗)∗d∗ = ud∗. How-
ever as exemplified here we have to use equations from right to left to get the
dual ones. As we want to read the equations as rewriting rules when necessary,
we shall keep the whole set presented.

Viewed as a rewriting system on words, Λ∗ is easily seen to be terminating
and confluent, because coefficient only interacts on their left while dual coeffi-
cients only interact on their right.

7.2.2 An easy model
Just as to convince oneself that the Λ∗ equational theory is nontrivial (it doesn’t
prove 0 = 1) we shall give a first model of it that we will call the N model
of Λ∗. A partial permutation on N is a one-to-one map σ from a subset of N,
the domain of σ denoted domσ, onto a subset of N, the codomain of σ denoted
codomσ. Partial permutations compose in the natural way, namely στ is the
partial permutation defined on domστ = {n ∈ dom τ, τ(n) ∈ domσ}.

Composition is associative, has as neutral IdN, the identity on N (which is a
partial permutation with full domain and codomain) that we will denote 1, and
as absorbant element being the partial permutation with empty domain (and
codomain) that we will denote 0.

As σ is one-to-one we may define its inverse σ∗ : codomσ → domσ by
σ∗σ = Iddomσ and σσ∗ = Idcodomσ. We then have (στ)∗ = τ∗σ∗, 1∗ = 1, and
0∗ = 0.
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The set of partial permutations on N therefore validates the involutive
monoid structure of Λ∗ equations1.

For the box morphism we need an additional structure: we fix a one-to-
one map from N2 onto N denoted (n1, n2) → ⟨n1, n2⟩, for example ⟨n1, n2⟩ =
1
2 (n1 + n2)(n1 + n2 + 1) + n1. If n1, . . . , nk+1 are natural numbers we denote
⟨n1, . . . , nk+1⟩ = ⟨n1, ⟨. . . , ⟨nk, nk+1⟩ . . . ⟩⟩. By the one-to-one onto assumption,
for any k, any integer n may be uniquely written n = ⟨n1, . . . , nk+1⟩.

Given a partial permutation σ we define !(σ) by:

• dom !(σ) = {n ∈ N, n = ⟨n1, n2⟩, n2 ∈ domσ};

• for n = ⟨n1, n2⟩ ∈ dom !(σ), !(σ)(n) = ⟨n1, σ(n2)⟩.

One easily checks that ! is a morphism w.r.t. the monoid structure of partial
inversion, respecting 0 and the inversion, thus satisfying the box morphism
equations which ends the modelization of the structural set of equations.

For the dynamic set we define the partial permutations p, q, d, r, s and t on
N by:

• p(n) = 2n, q(n) = 2n + 1 (actually any two permutations with disjoint
codomains would do, for example p(n) = ⟨n, 0⟩ and q(n) = ⟨n, 1⟩).

• d(n) = ⟨0, n⟩ (actually any integer in place of 0 would do as well).

• r(n) = ⟨ρ(n1), n2⟩, s(n) = ⟨σ(n1), n2⟩ where n = ⟨n1, n2⟩ and ρ and σ
are any two permutations with full domain and disjoint codomain (for
example one can take ρ = p and σ = q).

• t(n) = ⟨τ(n1, n2), n3⟩ where n = ⟨n1, n2, n3⟩ and τ is any permutation
from N2 to N (not necessarily onto), for example one can take τ(n1, n2) =
⟨n1, n2⟩.

It is a routine but useful exercice to check that these satisfy anihilation and
commutation equations. Note in particular that equations of the form x∗x = 1
are satisfied because all coefficients are interpreted by permutations with full
domains, whereas equations of the form x∗y = 0 are due to the fact that x and
y have disjoint codomains.

When w is a closed Λ∗-term we will denote as wN its interpretation as a
partial permutation on N.

7.2.3 ab∗ forms

Now that we know that Λ∗ is non trivial we may address the question of recog-
nising nonzero words.

A word in Λ∗ is positive (resp. negative) if it is structurally equal to a
word of the form !k1(x1) . . . !

kn(xn) (resp. !k1(x∗1) . . . !
kn(x∗n)) where the xi’s are

1As an aside note, partial permutations (on any set) form a well known structure called
an inverse monoid which is a slight generalisation of the group structure, see [29].
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coefficients. If a is a positive word then a∗ is negative (and conversely) and a∗a
is provably equal to 1. An ab∗-form is a word structurally equal to ab∗ for some
positive words a and b.

An ab∗ form is almost normal for Λ∗ viewed as a rewriting system, almost
because it may contain residual rewritings such as in !(p)d which is a positive
word thus an ab∗ form but still can be rewritten in dp. However the important
fact is that an ab∗ form cannot be proven equal to 0 in Λ∗ since a∗(ab∗)b =
(a∗a)(b∗b) = 1 and 0 = 1 is false in the N model.

Note that ab∗ forms are not the only non (provably) 0 terms, for example r∗t
is not equal to any ab∗ form but is non null in the N model if we choose appropri-
ately the interpretation of coefficients, for example if we set τ(n1, n2) = ⟨n1, n2⟩
so that t has full codomain. Actually we could add equations consistently with
Λ∗ canceling all terms non provably equal to some ab∗ form, that is with still a
non trivial model of the whole set of equations. For example we could choose
ρ(n1) = ⟨0, n1⟩, σ(n1) = ⟨1, n1⟩ and τ(n1, n2) = ⟨2, n1, n2⟩ so that r, s and t
have disjoint codomains thus satisfy r∗t = s∗t = 0. We shall not do so as we
will see shortly that non ab∗ forms don’t appear in the scope of our study.

7.2.4 Weight of paths

Let R be a proof net. To each arrow a in R we associate a coefficient xa in Λ∗

depending on the target node of a:

Multiplicative: xa = p (resp. q) if a is left (resp. right) premise of a multiplica-
tive node (` or ⊗).

Dereliction: xa = d is a is premise of a dereliction node.

Contraction: xa = r (resp. s) if a is left (resp. right) premise of a contraction
node.

Auxiliary door: xa = t if a is premise of an auxiliary door node of a box.

Other: xa = 1 in all other cases of arrow a.

Recall that the depth d(n) of a node n inR is the number of boxes containing
n (doors of a box are considered outside nodes of the box) and that the depth
d(a) of an arrow a is the depth of its target node. We define the functor weight
from R∗ to Λ∗ by:

• if a is an arrow in R then w(a) = !d(a)(xa);

• if e = a+ is a forward edge then w(e) = w(a); if e = a− is a backward
edge then w(e) = w(a)∗;

• w(ϵn) = 1 for any node n; if γ is a path and e a composable edge w(γe) =
w(e)w(γ).
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Remark 7.2.2. If γ and δ are two composable paths we have w(γδ) = w(δ)w(γ)
which seems to implie that the functor w(_) is contravariant. This is due to
the fact we choose to denote path composition by concatenation; if we used
categorical composition we would have w(δ ◦ γ) = w(δ)w(γ) making explicit
the fact that w(_) is covariant indeed.

As a simple but significant remark we note that the weight of a normal path
is in ab∗ form, a first step towards the algebraic caracterization of persistent
paths.

7.2.5 Regular paths

A straight path γ is regular if w(γ) = 0 is not a consequence of the equational
theory Λ∗, equivalently if w(γ) ̸= 0 in some non trivial model of Λ∗. Thanks
to the remark at the end of the preceding section a normal path is therefore
regular, which generalizes in:

Theorem 7.2.3 (ab∗ theorem). Let γ be a straight path in a proof net R; then,
using the equations of Λ∗ oriented from left to right, w(γ) may be rewritten
either into 0, in which case γ is not persistent, or into an ab∗ form, in which
case γ is persistent.

As a consequence γ is persistent iff γ is regular.

Remark 7.2.4 (Why straight paths (part 2)?). Let γ = a+0 a
−
1 in the multiplica-

tive (p. ??) or contraction (p. ??) reduction case; then w(γ) = p∗q (in the
multiplicative case) or r∗s (in the contraction case) = 0, thus γ is not regular.
Any such bouncing path is not regular, but as already remarked it could be
persistent if no cut ever reaches its bouncing node. This makes a second reason
for limiting our study to straight paths.

Proof. The fact that w(γ) rewrites into 0 or an ab∗ form is, by confluence
and termination of the rewriting system, consequence of the fact that w(γ) is
provably equal to 0 or an ab∗ form. We prove this by induction on the length
of the special reduction of γ.

If γ crosses some axiom cut then it is immediate that w(γ) is preserved by
the one step reduction since all the edges involved have weight 1.

If γ crosses a multiplicative cut then we have two cases: either one of the
crossing exchanges the premises of the cut in which case γ is not persistent.
Using the notations of the multiplicative cut case (p. ??), γ has a subpath of
the form a+i a

+
c a

′
c
−
a′j

− or a′i
+
a′c

+
a−c a

−
j with i ̸= j. Such a subpath has weight

p∗q if i = 1 and j = 0, q∗p if i = 0 and j = 1. Thus w(γ) = 0.
Otherwise each crossing of the multiplicative cut respects the premises, that

is, is of the form a+i a
+
c a

′
c
−
a′i

− or a′i
+
a′c

+
a−c a

−
i where i = 0 or 1. Such subpaths

have weight p∗p = 1 or q∗q = 1.
If we fire the multiplicative cut, γ has one residual γ′ and each crossing

subpath becomes a+i a
′
i
− or a′i

+
a−i which have weight 1 because ai and a′i are
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premise of cut nodes in the retract. Since nothing else changed between γ and
γ′ we deduce that w(γ) = w(γ′), thus get the result by induction2.

If there are no more multiplicative cuts crossed by γ the special reduction
chooses a special cut c which is therefore an exponential cut. We use the nota-
tions of the exponential reduction steps p. ??.

We begin by assuming that γ starts and ends outside the box b′ and never
crosses an auxiliary door of b′. Therefore γ may be decomposed into γ =
γ0α1δ1β

∗
1γ1 . . . γk−1αkδkβ

∗
kγk where the γi’s are subpaths outside b′, the δi’s

are subpaths entirely contained in b′, the αi’s and the βi’s are the c-crossing
subpaths of the form a+ϵia

+
c a

′
c
−
a′0

−. Note that all edges in αi and βi have
weight 1 except aϵi , the premise of the exponential node, the weight of which is
an exponential coefficient xi. Also, as the subpath δi is lying entirely inside b′

we have w(δi) = !(ui) where ui is the weight of δi into the subnet contained in
b′.

If γ exchanges the premises of c then γ is not persistent. This can hap-
pen only in the case c is a contraction cut and there is an i such that αi =
a+ϵia

+
c a

′
c
−
a′0

− while βi = a+1−ϵia
+
c a

′
c
−
a′0

−. We deduce that w(αiδiβ
∗
i ) = y∗i !(ui)xi

where xi and yi are respectively r and s or s and r. Thus w(αiδiβ
∗
i ) = 0 by the

commutation and anihilation equations for 0 and s, so that w(γ) = 0.
If γ never exchanges the premises of c, then for each i we have αi = βi so that

w(αiδiβ
∗
i ) = x∗i !(ui)xi = x∗i xi!

c(ui) = !c(ui) where xi and c are respectively: d
and 0 if c is a dereliction cut, r or s and 1 if c is a contraction cut, t and 2 if c
is a commutative cut. Thus w(γ) = vkx

∗
k!(uk)xkvk−1 . . . v1x

∗
1!(u1)x1v0 (where

the vi’s are the weights of the γi subpaths) = vk!
c(uk)vk−1 . . . v1!

c(u1)v0.
The residual of αi by the reduction of c is α′

i = a+ϵia
′
0
− in which the arrow

aϵi is now premise of a cut node, so that the weight of α′
i is 1. Thus the c-

crossing subpath αiδiα
∗
i have residual α′

iδiα
′
i
∗, with weight !c(ui) because in

the retract δi is now lying into c boxes (c being defined as before, depending
on the nature of the cut c). Thus the residual γ′ of γ has weight w(γ′) =
vk!

c(uk)vk−1 . . . v1!
c(u1)v0, that is w(γ) = w(γ′).

If now γ starts inside b′ then γ = δ0β
∗
0γ0α1δ1β

∗
1γ1 . . . γk−1αkδkβ

∗
kγk where

δ0 is lying inside b′ targeted on the principal door. If γ exchanges the premises
of c the computation is just the same as before and we conclude that γ is not
persistent and that w(γ) = 0. So we may suppose αi = βi for i = 1, . . . , k
so that w(γ) = vkx

∗
k!(uk)xkvk−1 . . . v1x

∗
1!(u1)x1v0x

∗
0!(u0) from which we deduce

that w(γ) = vk!
c(uk)vk−1 . . . v1!

c(u1)v0!
c(u0)x

∗
0.

On the other hand γ′ = δ0β
′
0
∗
γ0α

′
1δ1α

′
1
∗
. . . α′

kδkα
′
k
∗
γk and since each δi lies

into c boxes in the retract, w(γ′) is w(γ′) = vk!
c(uk)vk−1 . . . v1!

c(u1)v0!
c(u0).

Thus w(γ) = w(γ′)x∗0.

Last γ could enter b′ by one auxiliary door. As c is special this can happen

2There is a tricky case when γ admits a crossing of the cut that doesn’t visit both premises
of the multiplicative nodes. This may happen only at the beginning or end of γ, for example
if γ = a+c a′c

−a′0
−δ. In this case the weight of the crossing subpath is not preserved since it is

p∗ before the reduction and 1 after. This is not a problem since w(γ) = w(δ)p∗ so that the
result comes by induction on δ.
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only the very first time γ enters b′, that is γ starts below an auxiliary door of
b′, from which we deduce that γ has the form γ = σ∗

0δ0β
∗
0γ0α1δ1β

∗
1 . . . αkδkβ

∗
kγk

where σ0 is a descent path starting from inside b′ and crossing an auxiliary door
of b′, the αi’s, βi’s, γi’s and δi’s are as before. If γ exchanges the premises of
c we have w(γ) = 0 as before. Otherwise αi = βi for i ̸= 0 so that w(γ) =
vkx

∗
k!(uk)xk . . . x

∗
1!(u1)x1v0x

∗
0!(u0)b

∗
0 where b0 = w(σ0) is a positive word since

σ0 is a descent path. Therefore w(γ) = vk!
c(uk) . . . !

c(u1)v0!
c(u0)x

∗
0b

∗
0.

The residual of γ is γ′ = σ′
0
∗
δ0β

′
0
∗
γ0α

′
1δ1α

′
1
∗
. . . α′

kδkα
′
k
∗
γk where σ′

0 being
the residual of σ0 is still a descent path. Therefore we can compute w(γ′) =
vk!

c(uk) . . . !
c(u1)v0!

c(u0)b
′
0
∗ where b′0, the weight of σ′

0, is a positive word.

In summary wherever γ starts, if it doesn’t exchange the premises of c then
w(γ) has the shape wb∗ for some positive word b (possibly equal to 1), while
w(γ′) has the shape wb′∗ for some positive word b′ (possibly equal to 1). The
situation is symmetric at the end of γ so that we finally get: either γ exchanges
the premises of c in which case γ is not persistent and w(γ) rewrites to 0, or
w(γ) = awb and w(γ′) = a′wb′

∗ for some positive words (possibly equal to 1)
a, a′, b and b′ and some word w.

In this second case if γ is non persistent it is also the case of γ′ so by induction
w(γ′) = 0 which entails w = 0 thus w(γ) = 0. If γ, thus γ′, is persistent then
by induction w(γ′) is equal to an ab∗ form which entails that w has an ab∗ form
by confluence of the rewriting sytem and finally that w(γ) has an ab∗ form.

Remark 7.2.5 (The non preservation of weight). It is impossible to reach equality
of weights of γ and γ′ in all cases. This is one reason why we had to restrict to
special reduction which allows a strict control on the way γ may visit the box.

To get preservation of weight we should have that b0x0 = b′0 in the case γ
starts below an auxiliary door of b′. If we consider each case of exponential cut,
this leads to new equations that we could be tempted to add to our system:
td = 1, tr = rt, ts = st and t2 = t!(t). Unfortunately (exercise for the reader)
the first one, together with the Λ∗ equations, allows to prove 0 = 1, making the
attempt unworthy.

Another solution to this problem would be to slightly change the syntax
of MELL, firstly making the promotion rule functorial: from ⊢ Γ, A deduce
⊢ ?Γ, !A and secondly adding a digging rule to recover the regular promotion:
from ⊢ Γ, ??A deduce ⊢ Γ, ?A. This has the defect to contradict the subformula
property in cut free proofs, but the advantage that one can redefine exponential
cut elimination steps in a much more regular way: intuitively, after taking
the appropriate action on the box (removing it for dereliction, erasing all its
content for weakening, duplicating it for contraction, pushing it inside for the
commutative cut), the ? node cut on the principal door is simply moved on the
auxiliary doors. In particular with such a reduction the weight of paths would
be invariant by reduction.

Corollary 7.2.6 (Extensionability of regular paths). Let γ be a regular path
sourced on a node n which is neither a conclusion node, nor a w -node. Then
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there is an edge e such that eγ is regular. Symmetrically if γ doesn’t end on a
conclusion node nor a w -node then there is an edge e such that γe is regular.

Proof. Since γ is regular its weight rewrites into w(γ) = ab∗ for some positive
words a and b.

If γ begins upwardly from a node n, note that n cannot be an ax -node, thus
has a unique conclusion arrow a the weight of which has the form !d(x) where
d is the depth of the target node of a and x is the coefficient associated to a.
Therefore the path a−γ is straight and has weight w(a−γ) = ab∗!d(x∗) which
is in ab∗ form. Thus a−γ is regular.

If γ begins downardly from a node n then n being a non w -node has at least
one premise a0 of weight !d(x0). Thus a+0 γ is straight and has weight w(a+0 γ) =
ab∗!d(x0). The words a and b being positive we have a = !d1(y1) . . . !

d
k(yk) and

b = !e1(z1) . . . !
el(zl) where the di’s and ej ’s are integers and the yi’s and zj ’s

are coefficients. So w(a+0 γ) = !d1(y1) . . . !
d
k(yk)!

el(z∗l ) . . . !
e1(z∗1)!

d(x0).
By the ab∗-theorem this being the weight of a straight path has to rewrite

into an ab∗ form and in view of the rewriting rules this means the !d(x0) will move
to its left using only commutation rules until reaching one of two possibilities:

• !d(x0) has traversed the whole b∗ part, that is

w(a+0 γ) = !d1(y1) . . . !
d
k(yk)!

d′(x0)!
e′l(z∗l ) . . . !

e′1(z∗1)

which is an ab∗ form, thus a+0 γ is regular.

• !d(x0) has stopped inside the b∗ part at a point where no commutation
rule can be applied. Thus

w(a+0 γ) = !d1(y1) . . . !
d
k(yk)!

el(z∗l ) . . . !
ej (z∗j )!

d′(x0)!
e′j−1(z∗j−1) . . . !

e′1(z∗1).

Since no commutation rule applies between !ej (zj) and !d
′
(x0) and since

w(a+0 γ) must rewrite in ab∗ form or 0, an anihilation rule has to apply.
Thus ej = d′ and zj = x0 or x1 where x1 is the coefficient associated to
the other premise of n if any, so that !ej (z∗j )!d

′
(x0) = !d

′
(x∗ϵx0) by the box

morphism rule.
If zj = x0 then we get:

w(a+0 γ) = !d1(y1) . . . !
d
k(yk)!

el(z∗l ) . . . !
d′(x∗0x0)!

e′j−1(z∗j−1) . . . !
e′1(z∗1)

= !d1(y1) . . . !
d
k(yk)!

el(z∗l ) . . . !
ej+1(z∗j+1)!

e′j−1(z∗j−1) . . . !
e′1(z∗1)

which is in ab∗ form, thus a+0 γ is regular
Otherwise n is a binary node having a second premise a1 with weight
!d(x1) and zj = x1; in particular x1 satisfies the same commutation rules
than x0 and we therefore have:

w(a+1 γ) = !d1(y1) . . . !
d
k(yk)!

el(z∗l ) . . . !
ej (z∗j )!

d′(x1)!
e′j−1(z∗j−1) . . . !

e′1(z∗1)

= !d1(y1) . . . !
d
k(yk)!

el(z∗l ) . . . !
ej+1(z∗j+1)!

e′j−1(z∗j−1) . . . !
e′1(z∗1)

which is in ab∗ form so that a+1 γ is regular.
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Remark 7.2.7. As a consequence maximal regular paths are those starting and
ending in a w or in an conclusion node. However in the sequel we shall consider
that a path starting of ending into a w -node is not regular, for example by
putting 0 as the weight of the conclusion arrow of each w -node. Thus maximal
regular paths are regular paths starting and ending in a conclusion.

7.3 Proof nets as operators
The ab∗ theorem has another important consequence.

Theorem 7.3.1. Let S be any non trivial model of Λ∗, that is an involutive
monoid with a morphism ! and elements p, q, d, r, s and t satisfying Λ∗ equa-
tions. If R is any proof net and γ any straight path in R then γ is persistent iff
w(γ) ̸= 0 in S.

Proof. We know that if γ is persistent then w(γ) rewrites to an ab∗ form which
cannot be zero in S, S being a non trivial model of Λ∗. Conversely if γ is non
persistent w(γ) rewrites to 0 thus is 0 in S.

This means that any model of Λ∗ is suitable for computing persistent paths,
which explains the variety of instances of the GoI that may be found in the
litterature: the context semantics of Gontier-Abadi-Lévy, Danos-Regnier’s In-
teraction Machines, and to begin with, the original presentation of Girards as
an interpretation of proof nets as operators on the Hilbert space.

This section is devoted to the description of Girard’s initial results with a
strong emphasis on the combinatorial point of view. Apart from its historical
interest it introduces basic concepts and terminology that are used in the whole
theory and is also an introduction to further Girard’s work extending the GoI
to additives and later reconstructing the whole theory within the framework of
Von Neumann algebras, two topics that will not be covered in this book.

7.3.1 Lifting partial permutations to operators on ℓ2

It is not necessary to be expert in functional analysis to read the following, we
will use very little properties of Hilbert spaces and operator algebras and will
give the (very) basic definitions without proofs. Fundamentals on (separable)
Hilbert spaces may be found in any good handbook, e.g., [30].

7.3.1.1 Operators terminology

The Hilbert space ℓ2 (technically we should write ℓ2(N)) is the complex vec-
tor space of sequences x = (xk)k≥0 of complex numbers such that ∥x∥2 =∑
k≥0 |xk|2 <∞, equipped with the inner product ⟨x, y⟩ =

∑
k≥0 xkȳk.

For our purpose ℓ2 should be thought of as generated by the particular
sequences ei = (δik)k≥0 (where δik is the Kronecker symbol, 1 if i = k, 0
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otherwise) that form a Hilbert basis: it is orthonormal for the inner product,
that is ⟨ei, ej⟩ = δij for any i, j, and any element x = (xk)k≥0 ∈ ℓ2 may uniquely
be written as the infinite linear combination x =

∑
k≥0 xkek. Conversely the

coordinates of the vector x may be computed by xk = ⟨x, ek⟩ for each k. Except
for the topological constraint on ∥_∥2, we may view ℓ2 as an infinite dimensional
euclidian space with a denumerable orthonormal basis.

A bounded operator u on ℓ2 is a linear map u : ℓ2 → ℓ2 satisfying ∥u∥ =
sup∥x∥2≤1 ∥u(x)∥2 < ∞. Being linear maps, operators can be composed and
composition preserves boundedness so that bounded operators form a monoid
with the identity operator as neutral. Bounded operators can also be summed
and thus form a (non commutative) linear algebra.

There is a canonical duality on operators, namely adjointness: if u is a
bounded operator, its adjoint u∗ is the unique bounded operator satisfying
⟨u∗(x), y⟩ = ⟨x, u(y)⟩ for all x, y ∈ ℓ2. Adjointness enjoy the standard prop-
erties: (u∗)∗ = u, (uv)∗ = v∗u∗, and also some properties relative to the norm
making the algebra of bounded operators a C∗-algebra [5].

The kernel of a bounded operator u is the closed subspace of vectors x such
that u(x) = 0. The domain of u is the orthogonal subspace of its kernel. The
codomain of u is the image of u, that is the closed subspace of vectors of the
form u(x) for x ∈ ℓ2.

7.3.1.2 Partial permutations and operators

For the GoI interpretation we shall consider only a small subset of the algebra
of bounded operators. Given a partial permutation σ on N we can lift it into
an operator uσ on ℓ2 defined by its action on the Hilbert basis (ei):

uσ(ei) =

{
eσ(i) if i ∈ domσ

0 otherwise

When i ̸∈ domσ we will set eσ(i) = 0 so as to write simply: uσ(ei) = eσ(i) for
all i ∈ N. An operator of the form uσ for a partial permutation σ will be called
a monomial.

We have ⟨u∗σ(ei), ej⟩ = ⟨ei, uσ(ej)⟩ = ⟨ei, eσ(j)⟩ so that ⟨u∗σ(ei), ej⟩ = 1 iff
i = σ(j) iff j = σ∗(i), 0 otherwise. Therefore ⟨u∗σ(ei), ej⟩ = ⟨eσ∗(i), ej⟩ for all
i, j, which shows that u∗σ = uσ∗ .

From this we deduce that the domain of uσ is the codomain of u∗σ, that is
the subspace generated by the ei’s for i ∈ domσ = codomσ∗. Symetrically
the codomain of uσ is the domain of u∗σ, that is the subspace generated by the
ej ’s for j ∈ codomσ = domσ∗. For this reason we will slightly improperly say
that two monomials uσ and uσ′ have disjoint domains (instead of orthogonal
domains) when domσ and domσ′ are disjoint, i.e., when σ′σ∗ = 0.

Up to isomorphism the space ℓ2⊗ℓ2 is the Hilbert space ℓ2(N×N) of doubly
indexed sequences of complex numbers x = (xkl)k,l≥0 such that

∑
k,l≥0 |xkl|2 <

∞. Given x and y in ℓ2 we denote x⊗ y the ℓ2⊗ ℓ2 element x⊗ y = (xkyl)k,l≥0.
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Just as before the space ℓ2⊗ ℓ2 admits a Hilbert basis (eij)i,j≥0 where eij is the
sequence (δ(i,j),(k,l))k,l≥0, so that eij = ei ⊗ ej for all i, j.

The one-to-one map ⟨_,_⟩ : N2 ∼−→ N used to construct the box morphism
on the N model may be lifted into an isomorphism φ : ℓ2 ⊗ ℓ2 ∼−→ ℓ2 by setting
φ(ei ⊗ ej) = e⟨i,j⟩ for all i, j. This in turn can be used to define ! on operators
by:

!(u) : ℓ2
φ−1

−−→ ℓ2 ⊗ ℓ2
Idℓ2 ⊗u
−−−−→ ℓ2 ⊗ ℓ2 φ−→ ℓ2

which is immediately seen to be a morphism on the algebra of bounded oper-
ators, satisfying !(u)∗ = !(u∗). When u = uσ is a monomial this reduces to
uσ(e⟨i,j⟩) = e⟨i,σ(j)⟩ so that we have

!(uσ) = u!(σ)

Taking p, q, d, r, s and t as the monomials obtained by lifting the corre-
sponding partial permutations defined in section 7.2.2, we therefore get a new
model of the equational theory Λ∗, called the Hilbert space model.

Remark 7.3.2. As said before the Hilbert space model was the original presenta-
tion by Girard of the dynamic algebra. It was clear but not completely explicit
that the operators used to interpret proof nets were monomials. Even more
implicit were the equations these operators had to satisfy; they were extracted
afterward thus defining the equational theory Λ∗. So the presentation chosen
here reverses the chronology.

7.3.2 Graphs and matrices

In this section we will be working within the Hilbert space model of Λ∗, thus
consider elements of Λ∗ as bounded operators. Let R be a proof net together
with its weight functor w(_) in Λ∗. We want to give some description of max-
imal regular paths, that is regular paths starting and ending into conclusions
of R. We will begin with the matrix interpretation of proof nets, that was the
original presentation of the GoI by Girard, made possible thanks to the linear
algebra structure of the Hilbert space model.

We will use the functorial relation between graphs and matrices that we
briefly recall: if G is an oriented weighted graph, with weights in some (semi)-
ring, then one can represent it by its weight matrix WG, a square matrix indexed
by the set of G-nodes; the coefficient (WG)nn′ at row n, column n′, is the sum of
the weights of the arrows sourced on n′ and targeted on n. Matrix calculation
then shows that W k

G is the weight matrix of the graph Gk of paths of length k
in G.

If G′ is another weighted graph having the same set of nodes we can consider
paths aa′ where a is an arrow in G and a′ is an arrow in G′. Again matrix
calculation shows that the weight matrix of these paths is WG′WG.
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7.3.2.1 The execution formula

We call interface nodes in R the conclusion nodes and the nodes one con-
clusion of which is premise of a cut-node, that we will simply call cut-premise
nodes. We denote by C(R) the set of cut-premise nodes and by I(R) the set of
interface nodes.

We consider maximal straight normal paths between interface nodes. These
are of two kinds:

Axiom paths: have the form δ∗1δ2 where δ1 and δ2 are two maximal descent
paths starting with the two distinct conclusions of an ax -node and ending
in two (not necessarily distinct) interface nodes. We will write α : n→ n′

to express the fact that α is an axiom path from nodes n to n′. Note
that there are exactly two axiom paths crossing a given ax -node, that are
inverse one to the other.

Cut paths: have the form a+c a
′
c
− where ac and a′c are the two distinct premises

of a cut c. A cut path have weight equal to 1.

A maximal straight path is a straigth path from a conclusion or w -node of
R to a conclusion or w -node of R. Thanks to the remark 7.2.7, we will not
consider paths starting or ending in a w -node and call execution set the set of
maximal regular paths starting and ending in I(R) \ C(R).

Let Π(R) and Σ(R) be the two weighted graphs having the same set of
nodes, namely I(R), the interface nodes of R and axiom paths as arrows of
Π(R), cut paths as arrows of Σ(R).

We associate to Π(R) and Σ(R) their weight matrices indexed by the in-
terface nodes and with coefficients in the operator algebra Λ∗: π(R), the proof
matrix also denoted πR, and σ(R), the cut matrix also denoted σR. If n and
n′ are two interface nodes then the coefficient at row n, column n′ of π(R) and
σ(R) are respectively:

π(R)nn′ =
∑

α:n′→n

w(α),

σ(R)nn′ =

{
1 if n and n′ are the two distinct premises of a cut node,
0 otherwise.

An easy computation shows that σ2
R is the matrix having 1 on the diagonal

positions n, n for n ∈ C(R), 0 elsewhere, so that σ2
R may be considered as

a projector on the subspace generated by the cut-premise nodes (this will be
made more precise in the next section).

Say that γ is a Π-path of length k or simply a Πk-path if γ is regular of the
form γ = α0σ1α1 . . . σkαk where the αi’s are axiom paths and the σi’s are cut
paths. Denote as Πk(R) the set of Π-paths of length k. Note that Π0(R) is the
set of axiom paths, that is the set of arrows of Π(R).
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Given a Πk-path γ : n→ n′ define πγ to be the matrix with w(γ) at row n′

and column n, 0 elsewhere. We thus have:

(πRσR)kπR =
∑

γ∈Πk(R)

πγ

We now have all the ingredients to understand that the execution formula:

Ex(R) = (1− σ2
R)

∑
k≥0

(πRσR)kπR(1− σ2
R)

= (1− σ2
R)

∑
k≥0

∑
γ∈Πk(R)

πγ(1− σ2
R)

represents the weight matrix of the graph of maximal regular paths in R: the
sum part is the weight matrix of all paths from interface nodes to interface
nodes, the 1− σ2

R on both sides eliminate all the paths that are not sourced or
targeted on a conclusion node.

The remaining question is to check whether the infinite sum in the execution
formula converges in some sense. We present two answers in the following
sections, after discussing the properties of the execution formula.

7.3.2.2 Elementary properties of the matrix interpretation of R

We begin with some properties of (weight of) paths that we express in the
framework of operator algebra, although they actually only use the equational
theory so are valid in any model.

Lemma 7.3.3. If α : n → n′ and α′ : n → n′′ are two distinct axiom paths
sourced on a same node n then the monomials w(α) and w(α′) have disjoint
domains. Symetrically, if α : n′ → n and α′ : n′′ → n have the same target then
w(α) and w(α′) have disjoint codomains.

Proof. Write α = δ∗1δ2 and α′ = δ′1
∗
δ′2. Since α and α′ are distinct we must

have δ1 ̸= δ′1, otherwise δ2 and δ′2 would begin with the same premise of the
ax -node source of δ1 and δ′1, thus would be equal too.

Hence we have δ1 = δ10a0δ and δ′1 = δ′10a1δ where a0 and a1 are the two
distinct premises of a binary node (multiplicative or contraction). Therefore
w(δ1) = w(δ)x0w(δ10) and w(δ′1) = w(δ)x1w(δ′10) where w(δ), w(δ10) and
w(δ′10) are positive words, and x0, x1 are the weights of a0 and a1. In particular
we have x∗0x1 = 0 thus w(δ∗1)w(δ′1) = 0 thus w(α)w(α′∗) = w(δ2)w(δ∗1)w(δ′1)w(δ′2)

∗ =
0.

Corollary 7.3.4. If γ, γ′ are two distinct Πk-paths sourced on a same interface
node n then w(γ) and w(γ′) have disjoint domains. Similarly if γ and γ′ are
targeted on the same node n′ then w(γ) and w(γ′) have disjoint codomains.

Proof. Since γ and γ′ are distinct but sourced on a same node there is some i
such that γ = α0 . . . σiαi . . . σkαk and γ′ = α0 . . . σiα

′
i . . . σ

′
kα

′
k where αi and α′

i
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are two distinct axiom paths sourced on the same node. Thus w(αi) and w(α′
i)

have disjoint domains, from which it is immediate to deduce that it is the same
for w(γ) and w(γ′).

Remark 7.3.5. The fact that γ and γ′ have the same lenght is not mandatory;
in fact the weights of any two paths starting from a same node and diverging
at some point have disjoint domains because the point of divergence must be
a binary node taken upwardly, each path choosing his own premise. Then one
may generalize the reasonning proving lemma 7.3.3.

Let us now see some properties of the matrix interpretation of R. Firstly we
define the Hilbert space (ℓ2)I(R) =

⊕
n∈I(R) ℓ

2
n where for each n ∈ I(R), ℓ2n = ℓ2

is a copy of ℓ2. Let eni be the column vector having ei at position n, 0 elsewhere.
Then the family of vectors (eni, n ∈ I(R), i ∈ N) is a Hilbert basis of the space
(ℓ2)I(R).

Note that σ2
Reni = eni if n is a cut-premise node, 0 otherwise, so that as

announced above σ2
R is the projector on the subspace of (ℓ2)I(R) generated by

(eni, n ∈ C(R), i ∈ N). Thus 1 − σ2
R is the projector on the dual subpace

generated by the eni’s for all conclusion nodes n.
A matrix E indexed by I(R) and whose coefficients live in Λ∗ is a bounded

operator on the space (ℓ2)I(R). In particular it has an adjoint E∗ that is given
by (E∗)nn′ = (E)∗n′n for each n, n′ ∈ I(R).

Proposition 7.3.6. For any k ≥ 0 the matrix εk = (πRσR)kπR is hermitian,
that is satisfy ε∗k = εk.

For any k ≥ 0 and any n, n′ ∈ I(R) the coefficient (εk)nn′ is a sum of mono-
mials; the monomials occuring on row n have pairwise disjoint codomains and
the monomials occuring on column n′ have pairwise disjoint domains.

The matrices εk act as partial permutations on the basis (eni), i.e., there is
a partial permutation σk on the set I(R) ×N such that for any n ∈ I(R) and
i ∈ N, εkeni = en′j if σk(n, i) = (n′, j), 0 otherwise.

Proof. As seen before the coefficient (εk)nn′ is the sum of the weights of Πk-
paths γ : n′ → n. Since w(γ : n → n′)∗ = w(γ : n′ → n), we have (ε∗k)nn′ =
(εk)

∗
n′n =

∑
γ:n→n′ w(γ)∗ =

∑
γ:n′→n w(γ) = (εk)nn′ .

If w1 and w2 are mononomials occuring on column n′ of ϵk then there are
two Π-paths γ1 and γ2 of length k that have the same source n′ and such that
w1 = w(γ1), w2 = w(γ2). Thus w1 and w2 have disjoint domains. Symetrically
if w1 and w2 occurs on a same row, they have disjoint codomains.

By definition of eni and matrix calculation we have (εkeni)n′ = (εk)n′n(ei).
For a given n, monomials occuring in the column vector ((εk)n′n)n′∈I(R) have
disjoint domains thus there is at most one n′ such that (εkeni)n′ is nonzero.
Furthermore if such an n′ exists it is a sum of monomials having disjoint domains
thus there is a unique one, uσ, such that uσ(ei) = eσ(i) ̸= 0. Therefore εkeni =
en′σ(i) which shows that εk acts on the basis (eni).

Suppose εkemj = εkeni = en′σ(i). Thus there is a monomial uτ occuring on
row n′, column m of εk such that uτ (ej) = uσ(ei). Since monomials on row n′
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have disjoint codomains we must have m = n and uτ = uσ, that is τ = σ, thus
j = i since σ is a partial permutation. This shows that εk is injective, thus acts
as a partial permutation on the eni’s.

Remark 7.3.7. For simplicity we have stated the proposition for matrices of the
form (πRσR)

kπR, however it holds verbatim for matrices of the form (πRσR)k.

7.3.3 Strong topology and strong normalization
Let us remind that a sequence (uk) of bounded operators converges strongly
towards 0 when ∥uk∥ converge to 0. In his first paper on GoI “An interpretation
of system F ” [11], Girard showed:

Theorem 7.3.8. If R is a typed proof net in MELL2 (MELL with second or-
der quantifiers) then the operator σRπR is stronly nilpotent, thus the execution
formula converges for the strong topology.

7.3.3.1 A short account on Girard’s proof

The result is obtained by a method analogous to the proof of strong normalisa-
tion for system F adapted to the framework of linear logic, which is sometimes
called linear reducibility.

The first step is to define an orthogonality relation on Λ∗ (viewed as the
algebra of bounded operators on ℓ2): u ⊥ v iff uv is strongly nilpotent. We then
define the orthogonal of a set S of operators as S⊥ = {v ∈ Λ∗, ∀u ∈ S, u ⊥ v}.
A type is a reflexive set, that is a set S equal to its biorthogonal. Then is
given an interpretation of MELL2 formulas defined by induction, e.g., (A ⊗
B)∗ = (A⊥ `B⊥)∗

⊥
= {pup∗ + qvq∗, u ∈ A∗, v ∈ B∗}⊥⊥, !(A)∗ = (?A⊥)∗

⊥
=

{!(u), u ∈ A∗}⊥⊥, (∀αA⊥)∗ = (
⋃
X typeA[X/α]

∗)⊥.
The last step is to prove that when R is a proof net of type A whose cut

formulas are respectively A1, . . . , Ak then πR ∈ (A ` (A1 ⊗ A⊥
1 ) ` · · · ` (Ak ⊗

A⊥
k ))

∗ while σR ∈ (A⊥ ⊗ (A⊥
1 `A1)⊗ . . .⊗ (A⊥

k `Ak))
∗ which by definition of

orthogonality entails that σRπR is strongly nilpotent.

7.3.3.2 A more path oriented approach

Let (σk) be a sequence of partial permutations and suppose (uσk
) converges

strongly towards 0. Let x =
∑
i≥0 λiei ∈ ℓ2 be such that ∥x∥2 =

∑
i≥0 |λi|2 ≤ 1.

The monomial uσk
acting as a partial permutation on the Hilbert basis (ei), the

uσk
(ei)’s form an orthonormal system of vectors. We therefore get ∥uσk

(x)∥2 =
∥
∑
i≥0 λiuσk

(ei)∥2 ≤
∑
i≥0 |λi|2 ≤ 1 which shows that ∥uσk

∥ ≤ 1. Furthemore
if i ∈ domσk then ∥uσk

(ei)∥ = ∥eσk(i)∥ = 1 which shows that ∥uσk
∥ = 1 if

domσk is nonempty, 0 otherwise.
Thus the fact that ∥uσk

∥ converges towards 0 means that the sequence is
finite: there is some K such that for all k ≥ K, ∥uσk

∥ = 0, thus uσk
= 0. The

εk = (πRσR)
kπR acting as partial permutations on the basis, Girard’s theorem

shows that the sum converges because it is actually finite.
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The execution formula being a matrix representation of the execution set
(the set of maximal regular paths), this means that the execution set is finite
and therefore suggest the slightly more general result:

Theorem 7.3.9. Let R be a (not necessarily typed) proof net; if R is strongly
normalizing then the set of regular paths in R is finite and the operator σRπR
is nilpotent. Therefore the execution formula is finite, thus converges.

Remark 7.3.10. This means that the strong convergence of the execution is
actually consequence of the strong normalisation of typed proof nets, which
explains why Girard’s proof of strong convergence is analogous to the proof of
strong normalization of typed proof nets.

Proof. By induction on the strong normalization norm of R, it results from the
equivalence between regular and persistent, and the fact that, if R′ is a retract
by a one step reduction of R, the set of persistent paths in R is the lifting (by
the lifting functor) of the set of persistent paths in R′. By induction hyptohesis
the latter is finite, thus the former is finite.

Remark 7.3.11. The converse, if R has finitely many regular/persistent paths
then R is strongly normalizable, is also true but trickier to prove.

7.3.4 Weak topology and cycles
We are still left with the question of the convergence of the execution formula
in the case R is not strongly normalizable, e.g., when R is the translation of
a λ-term. This was firstly addressed by Girard who proposed to use the weak
topology on operators [13]; the proposition was proved adequate for dealing with
untyped proof nets by Malacaria and Regnier [27].

7.3.4.1 Weak topology

The weak topology is one of the numerous topologies on operator algebras.
A sequence (uk) of bounded operators converges weakly towards 0 if for all
x, y ∈ ℓ2, the inner product ⟨u(x), y⟩ converges towards 0 which in turn is
equivalent to ask that for any i, j ∈ N, the inner product ⟨uk(ei), ej⟩ converges
to 0.

When applied to monomial operators this yields a combinatorial caracteri-
sation: given a sequence (σk) of partial permutations, the sequence (uσk

) con-
verges weakly to 0 iff for all i, j ∈ N there is some K such that for all k ≥ K,
if i ∈ domσk then σk(i) ̸= j. This because ⟨uσk

(ei), ej⟩ = ⟨eσk(i), ej⟩ takes only
value 0 or 1, 1 iff σk(i) = j.

If we specialize even further on the sequence (ukσ)k≥0 for a given partial
permutation σ we get a caracterisation of weak nilpotency:

Lemma 7.3.12. The operator uσ is weakly nilpotent, i.e., the sequence (ukσ)k≥0

converges weakly to 0 iff for all k > 0, ukσ has no fixpoint in the basis (ei) of ℓ2,
that iff for all k > 0 and i ∈ N, ukσ(ei) ̸= ei or equivalently if for all k > 0, σk
has no fixpoint.
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Proof. Suppose for all k > 0, σk has no fixpoint and let i, j, l ∈ N such that
ulσ(ei) = ej , i.e., σl(i) = j. Let k > 0; then σl+k(i) ̸= j if defined, otherwise
j = σl(i) would be a fixpoint of σk. Thus for all k > l, ukσ(ei) ̸= ej so that uσ
is weakly nilpotent.

Conversely suppose σk(i) = i for some k > 0. Then uklσ (ei) = ei for all l ≥ 0
and uσ cannot be weakly nilpotent.

7.3.4.2 Cycles

A straight cycle in a proof net R is a straight path γ such that γ is composable
with itself and γγ is a straight path (thus also a straight cycle).

Theorem 7.3.13 (No square persistent path). If γ is a straight cycle in R then
the square path γγ is not persistent.

Proof. By induction on a special reduction of γ. If γ is normal, that is crosses no
cut then γ changes direction at most one time in an axiom node thus cannot be
a straight cycle because a straight cycle has to change direction an even number
of times in order to begin and end in the same direction.

Let c be a special cut for γ, thus also special for γγ. If γ has no residual by
the c-elimination step then γ, thus γγ, is not persistent. Otherwise let γ′ be the
residual of γ. If γ′ is not composable with itself then γγ has no residual and is
therefore not persistent. If γ′ is composable with itself then γ′ is a straight cycle
and we may conclude that γ′γ′ is not persistent by induction on the length of
the special reduction.

Corollary 7.3.14. If γ is a straight cycle then the domain and codomain of
w(γ) are disjoint.

Proof. Let w = w(γ). Since γγ is not persistent, ww = 0. Let ej ∈ domw ∩
codomw. Since ej ∈ codomw there is an i such that ej = w(ei). Therefore
w(ej) = w2(ei) = 0 thus ej ̸∈ domw, a contradiction.

Theorem 7.3.15. Let R be a proof net (typed or untyped). Then the matrix
πσ viewed as an operator on (ℓ2)I(R) is weakly nilpotent. Thus the execution
formula weakly converges.

Proof. We show that for any k > 0, µk = (πRσR)k has no fixpoint, which
according to lemma 7.3.12 entails the weak nilpotency of πRσR.

Let eni be a basis vector and suppose that µkeni = eni. By the proposi-
tion 7.3.6, since all monomials occuring at column n of µk have disjoint domains,
at most one of them, say uσ, is such that uσ(ei) = eσ(i) ̸= 0. If such a uσ exists,
since µkeni = eni, it occurs at row n thus at the diagonal position n, n in the
matrix µk and we have σ(i) = i.

Therefore uσ is the weight of a path γ of the form σ1α1 . . . σkαk starting
and ending downardly in n: γ is a straight cycle that satisfies w(γ)(ei) = ei, a
contradiction.
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7.3.5 Conclusion
In this section operator theory has been used essentially to turn the equationnal
theory Λ∗ or its N model of partial permutations into a linear algebra, that is
to enrich Λ∗ with a sum. This allowed for the matrix interpretation of proof
net and for expressing the execution formula, then to define the topological
ingredients describing the convergence of the execution formula. However, the
two convergences may actually be reduced to combinatorial properties: strong
convergence is consequence of strong normalisation of the proof net wich in turn
is equivalent to the finiteness of its set of execution paths, weak convergence is
consequence of the no square cycle property. This suggests that there might be
some more general and more abstract notion of proof net still satisfying one or
the other notion of convergence, which is somehow one motivation of Girard’s
subsequent work, firstly for extending the GoI to additives [14], and later for
adapting the theory in the framework of Von Neumann algebras [15].

Back to our MELL proof nets it is important for the sequel to note that all
these combinatorial properties, that is all the properties not involving operator
topology, are actually valid in any model of Λ∗, thus provable in the equational
theory itself. Typically the fact that the weights of two distinct straigth paths
starting from a same node in the same direction have disjoint domains is also
provable in the equational theory. We are soon going to see that this is the key
point allowing us to view the GoI interpretation as a token machine.

7.4 The Interaction Abstract Machine
Let us rephrase the disjoint domains property stated in corollary 7.3.4 in a
slightly more general way; we say that two paths γ and γ′ are initially separing
if γ = e1 . . . ek−1ek . . . eN and γ′ = e1 . . . ek−1e

′
k . . . e

′
N ′ where ek = a− and

e′k = a′− are upward edges associated to the distinct premises a and a′ of a
binary node (⊗ or c). Symetrically γ and γ′ are finally separing if γ and γ′

are initially separing.

Theorem 7.4.1 (Separing paths). If γ and γ′ are two regular initially separing
paths then w(γ) and w(γ′) have disjoint domains in the N model (thus in the
Hilbert model also), that is:

w(γ′)w(γ)∗ = 0

Symetrically if γ and γ′ are finally separing then γ and γ′ have disjoint codomains:

w(γ′)∗w(γ) = 0

Proof. The proof is adapted from the one of the corollary. Let δ = e1 . . . ek−1

be the common prefix of γ and γ′. We show that w(δe′k)w(δek)
∗ = 0 which

entails the result.
Let ak and a′k be the arrows underlying ek and e′k so that ek = a−k and

e′k = a′k
−. By hypothesis, ak and a′k are the two premises of a binary node,
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thus w(e′k)w(ek)
∗ = w(a′k)

∗w(ak) = 0. In the N model, w(δ)w(δ)∗ is a partial
identity thus w(δe′k)w(δek)

∗ = w(e′k)w(δ)w(δ)∗w(ek)
∗ = 0 in the N model.

Remark 7.4.2. With a light generalization of the ab∗ theorem 7.2.3, we can
deduce that w(γ′)w(γ)∗ = 0 in any model of the equational theory Λ∗, i.e.,
that Λ∗ ⊢ w(γ′)w(γ)∗ = 0. Indeed w(δe′k)w(δek)

∗ = w(e∗kδ
∗δe′k) is the weight

of a path which is however non straight. Nevertheless the ab∗ theorem still
holds for non straight paths, although a bit more technical to prove, therefore
w(γ)w(γ′)∗ is provably equal to 0 since it cannot rewrite into an ab∗ form.

The disjoint domain property expresses the determinism of the GoI: consider
the N model interpretation of Λ∗ and let i ∈ N and n a node in R. Then for
any N there is at most one regular path γ of length N starting downardly from
n such that i ∈ domw(γ) and at most one regular path γ′ of length N starting
upwardly from n such that i ∈ domw(γ′).

This suggests to turn the GoI interpretation into a token machine: in the
N model tokens are integers, in the Hilbert model tokens are the basis vectors
ei. If one enters upwardly by a conclusion of R with a token then one will find
at most one maximal regular path, thus an execution path, such that the input
token is in the domain of its weight. This execution path can be computed step
by step, letting the weight of each edge act on the token.

In order to build on this idea we will first introduce a slight variation of the
N model.

7.4.1 The interaction model

Let ΣS be the first order signature containing the following symbols:

• a constant symbol □ (the empty token);

• two constant symbols P and Q (the multiplicative tokens);

• a constant symbol D;

• two unary symbols of function R(_) and S(_);

• a binary symbol of function T (_,_).

An interaction token is a closed term on the signature ΣS . An exponential
token is an interaction token built on the sub-signature {D,R(_), S(_), T (_,_)}.

An interaction stack is a sequence π = (ui)i≥0 of interaction tokens that
are almost all equal to □, i.e., there is N ∈ N such that ui = □ for all i > N
which we write π = u0 · · · uN . Note that this writing is not unique, e.g., we have
u0 · · · uN = u0 · · · uN ·□ = . . . Two stacks π = u0 · · · uN and π′ = u′0 · · · u′N ′

are equal if one, say π, is prefix of the other, that is ui = u′i for i ≤ N , and for
N + 1 ≤ i ≤ N ′, u′i = □. The size of the stack π is the smallest N such that
ui = □ for all i ≥ N . The empty stack is the stack of size 0 and is denoted □.
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Remark 7.4.3. We define stacks as infinite sequence so that every stack, includ-
ing the empty stack, has as many first elements as needed: for any π, any l
there are unique tokens u1, . . . , ul and a unique πl such that π = u1 · · · ul · πl.

We denote S the set of interaction stacks. The interaction model or simply
S model is the set of partial permutations on the set S. The interpretation of
Λ∗-terms in the interaction model is given by:

• pS(π) = P · π, qS(π) = Q · π;

• dS(π) = D · π;

• rS(u · π) = R(u) · π, sS(u · π) = S(u) · π;

• tS(u0 · u1 · π) = T (u1, u0) · π

• if σ is a partial permutation on interaction stacks then !S(σ) is defined by:
!S(σ)(u · π) = u · σ(π).

When w is a closed Λ∗-term we denote by wS its interpretation as a partial
permutation on S.

It is an exercise to check that these constructions satisfie the Λ∗ equations.
Observe in particular that for x = r, s, t, the interpretation xS has full domain
(x∗SxS = 1) because any stack has a first element and that !S(1) = 1 for the
same reason.

7.4.1.1 Embedding the interaction model in the N model.

Recall from section 7.2.2 that the N model is based on a pairing function ⟨_,_⟩ :
N2 ∼−→ N that we associate on the left: ⟨n1, . . . , nk+1⟩ = ⟨n1, ⟨. . . , ⟨nk, nk+1⟩ . . . ⟩⟩.
We suppose further that ⟨0, 0⟩ = 0, which is true for each of the 2 well known
pairing functions.

We define a mapping N(_) from the interaction model to the N model by:

• N(□) = 0.

• N(P ) = 1, N(Q) = 2, N(D) = 3. These value are arbitrary, any other
would do provided N(P ) ̸= N(Q).

• N(R(u)) = ρ(N(u)), N(S(u)) = σ(N(u)) where ρ and σ are the two
partial permutations used to define r and s in the N model.

• N(T (u0, u1)) = τ(N(u0),N(u1)) where τ is the partial permutation used
to define t in the N model.

• Thanks to the condition ⟨0, 0⟩ = 0 if the stacks u0 . . . uN and u0 . . . uM
are equal then ⟨N(u0), . . . ,N(uN ), 0⟩ = ⟨N(u0), . . . ,N(uM ), 0⟩ so that we
may define N(u1 · · · uN ) = ⟨N(u1), . . . ,N(uN ), 0⟩.
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• Since ⟨_,_⟩ is one-to-one, N(_) is injective on stacks. Thus if σ is a
partial permutation on stacks we may define the partial permutation N(σ)
on N by:

N(σ)(N(π)) = N(σ(π)).

Theorem 7.4.4. For any closed Λ∗-term w the set N(S) ⊂ N is invariant by
the action of wN and we have:

N(wS) = wN |N(S) .

Hence the restriction to N(S) of the N model is a submodel isomorphic for the
Λ∗ structure to the interaction model.

The proof is immediate, by induction on w.

7.4.2 The Interaction Abstract Machine (IAM)
The IAM0 is the machine defined by the weighting of a proof net R in the
interaction model. A state of the machine is a pair (e, π) where e is an edge in
R and π is an interaction stack. The transitions are:

• (a−0 , π) → (a+1 ,wS(a1)(π)) if a0 and a1 are the two conclusions of an
ax -node;

• (a+0 , π) → (a−1 , π) if a0 and a1 are the two premises of a cut-node (the
weight of the premise of a cut-node is always 1);

• (a+, π) → (a′+,wS(a
′)(π)) if a and a′ are respectively premise and con-

clusion of a same node;

• (a′−, π) → (a−,wS(a)
∗(π)) if a and a′ are respectively premise and con-

clusion of a same node and π ∈ codomwS(a
′).

A IAM0-run is given by an interaction stack π0, the input stack of the run,
and a sequence of transitions (e1, π1) → (e2, π2) → · · · → (eN , πN ) such that
π1 = wS(e1)(π0). From the definition of transitions, in particular the constraint
on the codomain in the last clause, we immediately get:

Theorem 7.4.5. A sequence (ei, πi)1≤i≤N of IAM0 states is a IAM0-run on
input π0 iff for each 1 ≤ i ≤ N , πi = wS(ei)(πi−1).

When this is the case γ = (ei)1≤i≤N is a regular path, wS(γ)(π0) = πN and
for any regular path γ′ starting in the same direction than γ, if π0 ∈ domwS(γ

′)
then one of γ and γ′ is prefix of the other.

In other terms the IAM0 is a deterministic device for computing regular
paths. The deterministic observation is due to the already observed fact that
all transitions in the same direction available on a given node have pairwise
disjoint domains, thus for a given state at most one upward and at most one
downard transition may be applied. Actually the IAM0 is bideterministic in
the sense that at any point during a run one can reverse direction, in which case
there will be no other choice than rewinding the run, eventually ending on the
starting node in the input state.
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7.4.2.1 The interaction model with 2 stacks

Let π = (ui)i≥0 be an interaction stack. The d-prefix of π is the d-tuple
(u0, . . . , ud−1) and the d-suffix of π the substack πd defined by π = u0 · · · ud−1 ·
πd. If σ is a partial permutation on interaction stacks then !d(σ) acts only on
d-suffixes, leaving the d-prefixes unchanged, that is:

!dS(σ)(u0 · · · ud−1 · π) = u0 · · · ud−1 · σ(π)

This suggests that instead of acting at depth d on the stack we may track
the current depth step by step by splitting the stack in a prefix B of elements
at depth less than d and an active part E at depth d. Elements move from one
stack to the other when the depth changes, from E to B when entering a box,
from B to E when exiting a box.

Building on this idea let B be the set of bistacks, i.e., pairs (E,B) where
E, the balanced stack, and B, the box stack3, are interaction stacks. Given
a partial permutation σ on S let σ̄ be the partial permutation on B defined by
σ̄(E,B) = (σ(E), B). In particular if x is a Λ∗ coefficient we set xB = x̄S

Let β : B → B be given by β(E, u ·B)) = (u · E,B). Then we have:

!dS(σ) = βd ◦ σ̄ ◦ β∗d.

Accordingly we define !B(σ) = βσβ∗. When w is a closed Λ∗-term we will denote
wB its interpretation as a partial permutation on B.

Theorem 7.4.6. For any Λ∗ closed term w we have:

wB = w̄S

As a consequence the set of partial permutations on B form a model of Λ∗, the
B model, which is isomorphic to the S model.

If a is an arrow in a proof net R with associated coefficient xa then we define
its B-weigth wB(a) by:

• wB(a) = xaB is a is not exiting a box, i.e., a is not premise of a !-node or
a p-node;

• wB(a) = β if a is premise of a !-node;

• wB(a) = tBβ if a is premise of a p-node.

The definition of B-weight is extended to edges and paths in the natural way.
Remark 7.4.7. Contrarily to the N or the S-weight, the B-weight of a path is
not the interpretation in B of its Λ∗ weight, that is, we don’t have in general
wB(γ) = w(γ)B. However both terms are strongly related:

Theorem 7.4.8. If γ is a path starting at depth ds and ending at depth dt in
a proof net R then:

βdswB(γ)(β
∗)dt = w(γ)B = wS(γ).

3The letter B being taken by the Box stack, we choose E for the balanced stack because
of the french translation Équilibré of Balanced.
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7.4.2.2 Exponential branches

Let n be the root node of a ?-tree, d the depth of n, n0 be a node in the tree
at depth d0, and δ : n0 → n be the corresponding exponential branch. Put
l = d0 − d the number of boxes that are exited between n0 and n, that we
call the lift of the exponential branch δ. We define a term uδ[x0, . . . , xl] with
exactly l + 1 free variables on the sub-signature {R(_), S(_), T (_,_)} of ΣS
by induction on the length of δ:

• if δ has length 0 then l = 0 and uδ = x0;

• if δ = δ0a
+ where a is the left (resp right) premise of a c-node then

uδ = R(uδ0) (resp. S(uδ0));

• if δ = δ0a
+ where a is the premise of a p-node then the target node of δ0

is the source node of a, thus lies in a box at depth d + 1 so that the lift
of δ0 is l− 1. By induction uδ0 depends on variables x0, . . . , xl−1 and we
define uδ = T (uδ0 , xl).

Lemma 7.4.9. With the notations just defined for any stacks E and B and
any tokens u0, . . . , ul:

wB(δ)(u0 · E, u1 · · · ul ·B) = (uδ[u0, u1, . . . , ul] · E,B)

In particular, if n0 is a d-node leaf of the exponential tree and a0 is its premise
then

wB(a
+
0 δ)(E, u1 · · · ul ·B) = (uδ[D,u1, . . . , ul] · E,B)

Proof. The second part is immediate consequence of the first one and of the
definition of the weight dB of a0: dB(E,B) = (D · E,B).

To keep notations light we set w = wB(δ) and w0 = wB(δ0). The proof is
by induction on δ.

If δ has length 0 then uδ = x0, l = 0 and w = 1 thus w(u0 · E,B) =
(uδ[u0] · E,B).

If δ = δ0a
+ where a is left premise of a c-node then w = rBw0 and by

induction hypothesis w0(u0 · E, u1 · · · ul ·B) = (uδ0 [u0, . . . , ul] · E,B) thus

w(u0 · E, u1 · · · ul ·B) = rBw0(u0 · E, u1 · · · ul ·B)

= rB(uδ0 [u0, . . . , ul] · E,B)

= R(uδ0 [u0, . . . , ul]) · E,B)

= (uδ[u0, . . . , ul] · E,B)

by definition of uδ. Same computation replacing rB by sB and R by S if a is
right premise of a c-node.

If δ = δ0a
+ where a is premise of a p-node then w = tBβw0. By induction

hypothesis w0(u0 ·E, u1, · · · , ul−1 ·B) = (uδ0 [u0, . . . , ul−1] ·E,B) for any stack



202 CHAPTER 7. GEOMETRY OF INTERACTION

B. Thus

w(u0 · E, u1 · · · ul ·B) = tBβw0(u0 · E, u1 · · · ul ·B)

= tBβ(uδ0 [u0, . . . , ul−1] · E, ul ·B)

= tB(ul · uδ0 [u0, . . . , ul−1] · E,B)

= (T (uδ0 [u1, . . . , ul−1], ul) · E,B)

= (uδ[u0, . . . , ul] · E,B)

by definition of uδ.

7.4.2.3 The IAM

The IAM is the machine given by a proof net R together with its weight
function wB. The states of the machine are the pairs (e, (E,B)) where e is an
edge in R and (E,B) ∈ B is a bistack. The transitions are deduced from the
IAM0 as follows:

• (a−0 , (E,B))) → (a+1 ,wB(a1)(E,B)) if a0 and a1 are the two conclusions
of an ax -node;

• (a+0 , (E,B)) → (a−1 , (E,B)) if a0 and a1 are the two premises of a cut-
node;

• (a+, (E,B)) → (a′+,wB(a
′)(E,B)) if a and a′ are respectively premise

and conclusion of a same node;

• (a′−, (E,B)) → (a−,wB(a)
∗(E,B)) if a and a′ are respectively premise

and conclusion of a same node and (E,B) ∈ codomwB(a
′).

A IAM-run is defined as a IAM0-run: an input bistack (E0, B0) and a
sequence of transitions (ei−1, (Ei−1, Bi−1)) → (ei, (Ei, Bi)). We get the same
result as before: the IAM is a bideterministic device for computing regular
paths.

Remark 7.4.10. All transitions but the ones traversing a box frontier leave the
B stack invariant. A token is popped from the E stack and pushed on the B
stack each time a box is entered, and conversely each time a box is exited, thus,
if we start from a node at depth 0 with B0 = □, the empty stack, then at each
step the size of Bi is the current depth, that is the number of boxes that have
been entered. This is the reason why we call B the box stack.

7.4.3 Legal paths
Legal paths were defined by Asperti and Laneve in [3] in the framework of λ-
calculus but their definition is easily adaptable to proof net. In this section
we will suppose that proof nets have no exponential axioms, that is no axiom
node the conclusion of which have type !A and ?A⊥. As a consequence of this
hypothesis the leaves of any exponential tree are either d -nodes or w -nodes.
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Note that up to some η-expansion of exponential axioms this hypothesis is
realised and is in particular satisfied for nets that are translation of lambda-
terms.

In this section we will only consider B-weights of paths. To keep notations
light for any path γ we will denote wγ = wB(γ).

7.4.3.1 Well balanced paths

Well balanced paths (w.b.p. in short) are defined by induction:

• If a and a′ are the two premises of a cut-node then a+a′− is a w.b.p.

• If γ is a w.b.p. sourced and targeted on multiplicative nodes n and n′

and if a0, a1 and a′0, a′1 are the premises of respectively n and n′ then for
ϵ = 0, 1, a+ϵ γa′ϵ

− is a w.b.p.

• If γ is a w.b.p. sourced on the root node n of a ?-tree and targeted on
a !-node n′, n0 is a d -node leaf of the exponential tree, δ : n0 → n is the
corresponding exponential branch, a0 is the premise of n0, and a′ is the
premise of the !-node then a+0 δγa

′− and a′+γδa−0 are w.b.p.

• If a and a′ are the two conclusions of an ax -node and γa− and a′
+
γ′ are

w.b.p. then γa−a′+γ′ is a w.b.p.

The following properties of w.b.p. are easily checked by induction:

Proposition 7.4.11. Let γ be a w.b.p. in a proof net R. Then:

• γ starts downardly and ends upwardly. Thus every w.b.p. is straight.

• γ is a w.b.p.

• The source and target nodes of γ, if not ax nodes, are dual: ⊗ and ` or
? and !.

• Furthermore if R is typed then the first and last edge of γ have dual types
A and A⊥.

• If R reduces in R′ and γ has a non trivial residual γ′ in R′ then γ′ is a
w.b.p.

Remark 7.4.12. Note the similarity between the definition of w.b.p. and the
cut elimination steps. The main difference is that w.b.p. jump in one step from
the conclusion of ?-trees to their leaves, where this is multiple cut elimination
steps. For this reason and also because w.b.p. always link dual nodes they are
sometimes called virtual cuts.

Theorem 7.4.13 (Balanced invariant). Let γ be a regular w.b.p. in a proof net
R. There is a partial permutation σγ on stacks such that domwγ = S×domσγ
and for any (E,B) ∈ domwγ :

wγ(E,B) = (E, σγ(B)).
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Remark 7.4.14. In other terms a IAM run starting from the source node of
a w.b.p. γ with the input bistack (E,B) doesn’t depend on E until arriving
at the end of γ. Intuitively the proof below shows that all tokens pushed on
the balanced stack are popped before reaching the end of γ, but that no token
originally in E are popped.

Proof. For simplicity we will drop the subscript B in the coefficients, e.g., write
p for pB. Note that the property for γ entails the property for γ because γ is
balanced iff γ is balanced and wγ = w∗

γ .

Assume γ is a w.b.p. We show by induction on the definition of γ that there is
a partial permutation σγ on stacks such that for any stack B, if (E,B) ∈ domwγ

for some E then (E′, B) ∈ domwγ for any E′ and wγ(E
′, B) = (E′, σγ(B)).

In the base case, γ = a+a′
− for two premises a, a′ of a cut then wγ = 1 so

actually any (E,B) is in domwγ and we just have to take B′ = B.

Suppose γ = a+ϵ γ0a
′
ϵ
− where aϵ and a′ϵ are premise of multiplicative nodes.

Then wγ = x∗wγ0x where x = p if ϵ = 0, q if ϵ = 1.
Let (E,B) ∈ domwγ . Then wγ(E,B) = x∗wγ0x(E,B) = x∗wγ0(X · E,B)

where X is P or Q depending on the value of ϵ. Thus (X ·E,B) ∈ domwγ0 so by
induction (X ·E′, B) ∈ domwγ0 for any stack E′ and we have wγ0(X ·E′, B) =
(X · E′, σγ0(B)), thus wγ(E

′, B) = x∗(X · E′, σγ0(B)) = (E′, σγ0(B)) which
shows that (E′, B) ∈ domwγ and that we may take σγ = σγ0 .

Suppose γ = a+0 δγ0a
′− where a0 is premise of a d -node n0, δ is the expo-

nential branch from n0 to the root of its exponential tree and a′ is premise of
a !-node. Then wγ = β∗wγ0wδ where wδ = wB(a

+
0 δ). Let l be the lift of the

exponential branch δ. By lemma 7.4.9 we have a ΣS -term uδ[x0, . . . , xl] such
that wδ(E, u1 · · · ul · B) = (uδ[D,u1, . . . , ul] · E,B) for any E, B and tokens
u1, . . . , ul.

Let (E,B) ∈ domwγ ; by definition of stacks there are unique tokens u1,
. . . , ul and a unique stack Bl such that B = u1 · · · ul · Bl. Writing u =
uδ[D,u1, . . . , ul] for short we have wγ(E,B) = β∗wγ0wδ(E,B) = β∗wγ0(u ·
E,Bl). Thus (u·E,Bl) ∈ domwγ0 so by induction (u·E′, Bl) ∈ domwγ0 for any
E′ and wγ0(u·E′, Bl) = (u·E′, σγ0(Bl)). Thus wγ(E

′, B) = β∗(u·E′, σγ0(Bl)) =
(E′, u ·σγ0(Bl)). We get the result by setting σγ(B) = uδ[D,u1, . . . , ul] ·σγ0(Bl).

Last suppose γ = γ1γ2 where γ1 and γ2 are w.b.p. respectively targeted
and sourced on an ax -node. Put wi = wγi so that wγ = w2w1 and suppose
(E,B) ∈ domwγ . Then (E,B) ∈ domw1 by induction we have σ1 such that
w1(E,B) = (E, σ1(B)), thus (E, σ1(B)) ∈ domw2. By induction (E′, B) ∈
domw1 and (E′, σ1(B)) ∈ domw2 for any E′. Furthermore we have σ2 such that
w2(E

′, σ1(B)) = (E′, σ2(σ1(B)) so we get the result by setting σγ = σ2 ◦σ1.

7.4.3.2 Box cycles

Recall that d(n) is the depth of the node n, that is the number of boxes contain-
ing n, and that the depth of an arrow a and its associated edges d(a) = d(a+) =
d(a−) is the depth of the target node of a.
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Lemma 7.4.15. Let γ be a path in a proof net starting and ending from (not
necessarily distinct) nodes at same depth d and crossing only nodes at depth at
least d. Then for any bistack (E,B) ∈ dom γ there is a unique E′ such that:

wγ(E,B) = (E′, B)

Note that the hypothesis on γ entails that the whole path is either starting
and ending at depth 0, or contained in a box.

Proof. The uniquess is consequence of the fact that wγ is a partial permutation
on bistacks.

We reason by induction on γ. Let γ = eγ′ where e is the first edge of γ. Let
n and n′ be the source and target of e.

If d(n) = d(n′) = d then we = xϵB for some Λ∗-coefficient x, ϵ being 1 or ∗
depending on the direction of e. Thus we(E,B) = (xϵS(E), B). By induction
hypothesis, since γ′ starts and ends at depth d, wγ′(xϵS(E), B) = (E′, B) for
some E′ thus wγ(E,B) = wγ′we(E,B) = (E′, B).

If d(n) ̸= d(n′) then since d(n′) ≥ d(n), d(n′) = d(n) + 1 which means that
the edge e is entering a box b′, i.e., n is a box door node (! or p-node) and n′

lies inside b′. Thus wB(e) = β∗x∗B where x = t if n is a p-node, 1 if n is a !-node.
Now since γ, thus γ′, ends at depth d there is an edge e′ : n′′ → n′′′ in γ′ that
exit b′; in particular d(n′′) = d+ 1 and n′′′ is a b′ door at depth d(n′′′) = d. Let
e′ be the first such edge occuring in γ′; we have we′ = yBβ where y is t or 1
depending on the type of n′′′. Write γ′ = γ′′e′γ′′′ where γ′′ : n′ → n′′ is entirely
lying inside b′, thus crosses only nodes at depth greater than d+1, and γ′′ starts
on n′′′ and crosses only nodes at depth at least d.

So wB(γ) = wγ′′′ yBβwγ′′ β∗x∗B and using the induction hypothesis on γ′′

and γ′′′ we can compute its action on (E,B) (we dropped the surrounding
parentheses for readability):

E, B
x∗
B−→ u · E1, B where u · E1 = x∗S(E)

β∗

−→ E1, u ·B
wγ′′
−→ E2, u ·B by induction hypothesis on γ′′, for some E2

β−→ u · E2, B
yB−→ v · E3 B where v · E3 = yS(u · E2)
wγ′′′
−→ E′ B by induction hypothesis on γ′′′, for some E′.

Let b be a box in a proof net. A b-path is a path starting upwardly and
ending downardly on b-door nodes (the !-node or some p-node) and such that
all nodes crossed are inside b. We define !-cycles and ?-cycles by induction
(see figure 7.1 below for the general picture):

!-cycle, base case: a b-path starting and ending on the !-node of a box b.
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?-cycle: γ1δγ2 where:

• γ1 : n1 → n and γ2 : n2 → n are two w.b.p. sourced respectively on
some ?-nodes n1 and n2 and targeted on the !-node n; when n1 and
n2 are both root nodes of some exponential trees the ?-cycle is said
initial. When n1 and n2 are both dereliction nodes the ?-cycle is
said final.

• δ is a !-cycle at n.

!-cycle, induction case: δ0θ1δ1 . . . θkδk such that there is a box b satisfying:

• each δi is a b-path
• δ0 starts upwardly on the !-node n of b, δk ends downardly on n;
• for i > 0, δi starts upwardly on a p-node pi of b; for i < k, δi ends

downardly on pi+1 (the pis are not necessarily distinct);
• each θi is a ?-cycle starting downardly and ending upwardly at pi.

?
n1

...

?
n2

...

!
n

p
p1

θ1

. . .

. . .

p
pk

θkγ1

γ2

δ0
δ1 δk−1

δk

b

Figure 7.1: The general form of a ?-cycle: γi are w.b.p., θi are ?-cycles, the pis
are not necessarily distinct

Theorem 7.4.16 (Box invariant). Let δ be either a !-cycle or an initial ?-cycle.
If δ is regular then there is a partial permutation τδ on stacks such that for any
token u, any stack E and any stack B if (E,B) ∈ domwδ then E ∈ dom τδ
and:

wδ(u · E,B) = (u · τδ(E), B)
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Furthermore if δ is an initial ?-cycle, thus δ = γ1δ0γ2 for some w.b.p. γ1 and
γ2, then γ1 = γ2.

Proof. By induction on δ. If δ is a b-path sourced and targeted on the !-node n of
a box b then δ = a−δ0a

+ where a is the premise of n and δ0 is a path starting and
ending on the source node of a, lying entirely in b, thus satisfying the conditions
of the lemma 7.4.15. So we have wδ = wB(a)wδ0wB(a)

∗ = βwδ0β
∗ and we can

compute its action on (u · E,B):

u · E, B
β∗

−→ E, u ·B
wδ0−→ E′, u ·B where E′ is given by the lemma
β∗

−→ u · E′, B

so that defining τδ(E) = E′ we get the result.

If δ = γ1δ0γ2 where γ1 and γ2 are w.b.p. and δ0 is a !-cycle then we have
wδ = w∗

γ2wδ0wδ1 and:

u · E, B
wδ1−→ u · E, σγ1(B))
wδ0−→ u · τδ0(E), σγ1(B))

so that wδ(u · E,B) = w∗
δ2
(u · τδ0(E), σγ1(B)).

If γ2 ̸= γ1, as they are w.b.p. targeted on the same node and sourced on non-
ax nodes they cannot be suffix one of the other, thus wγ1 and wγ2 have disjoint
codomains. But (u ·E, σγ1(B)) = wγ1(u ·E,B) ∈ codomwγ1 and we have seen
that the domain and codomain of a w.b.p. only depend on the box stack, thus
(u ·τδ0(E), σγ1(B)) ∈ codomwγ1 . Therefore, δ being supposed regular, we must
have γ2 = γ1 and the computation may be continued:

wδ(u · E,B) = w∗
γ1(u · τδ0(E), σγ1(B))

= (u · τδ0(E), B)

so setting τδ = τδ0 we are done.

The last case is δ = δ0θ1δ1 . . . θkδk, where:

• the δis are b-paths: for each i > 0, δi = a−i−1δ
′
0a

+
i where the ais are the

premises of the door nodes and δ′0 is entirely contained in b; in particular
a0 = ak is the premise of the !-node of b. Thus wδ0 = tBβwδ′0

β∗, wδi =
tBβwδ′i

β∗t∗B for 1 ≤ i < k and wδk = βwδ′k
β∗t∗B.

Since δ′i lies entirely in the box b by lemma 7.4.15 we have a partial per-
mutation ρi such that for any (E,B) ∈ domwδ′i

, wδ′i
(E,B) = (ρi(E), B).

• the θis are ?-cycles starting and ending from p-nodes of b: θi = αiθ
′
iα

∗
i

where αi is the descent path starting from pi down to the root node ni of
the exponential tree and θ′i is a ?-cycle at ni.
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By induction hypothesis for any u, E, B such that (u · E,B) ∈ domwθ′i
we have wθ′i

(u ·E,B) = (u · τθ′i(E), B) for some Ei depending only on E.

Denote as xi the weight of αi, so that wθi = x∗iwθ′i
xi. By lemma 7.4.9

there is a ΣS -term uαi
[x0, x1, . . . , xli ] such that xi(u0 ·E, u1 · · · uli ·Bi) =

(uαi [u0, . . . , uli ] · E,Bi).

Putting all this together we have

wδ = βwδ′k
β∗t∗B x

∗
kwθ′kxk . . . tBβwδ′1

β∗t∗B x
∗
1wθ′1x1 tBβwδ′0

β∗

and we may compute the action of wδ on the bistack (u · E,B):

u · E, B
β∗

−→ E, u ·B
wδ′0−→ u0 · E′

0, u ·B u0 and E′
0 defined by u0 · E′

0 = ρ0(E)

β−→ u · u0 · E′
0, B

tB−→ T (u0, u) · E′
0, B

x1−→ uα1
· E′

0, B1 where B1 is defined by B = u1 · · · ul1 ·B1

and uα1
= uα1

[T (u0, u), u1, . . . , uli ]
wθ′1−→ uα1 · E1, B1 where E1 = τθ′i(E

′
0)

x∗
1−→ T (u0, u) · E1, B

t∗B−→ u · u0 · E1, B

β∗

−→ u0 · E1, u ·B
wδ′1−→ u1 · E′

1, u ·B where u1 · E′
1 = ρ1(u0 · E1)

β−→ u · u1 · E′
1, B

tB−→ T (u1, u) · E′
1, B

...
−→ T (uk−1, u) · E′

k−1, B
xk−→ uαk

· E′
k−1, Bk

wθ′
k−→ uαk

· Ek, Bk
x∗
k−→ u · uk−1 · Ek, B

β∗

−→ uk−1 · Ek, u ·B
wδ′

k−→ E′, u ·B where E′ = ρk(uk−1 · Ek)
β−→ u · E′, B
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All the actions being one-to-one, the output E′ is in one-to-one correspondance
with the input E. Thus defining τδ(E) = E′, τδ is a partial permutation and
we are done.

Remark 7.4.17. This calculation shows a difference between w.b.p.’s weights and
box cycles weights: we’ve seen that the former leave the balanced box invariant
in particular because no transition ever pops a token from the initial input stack.
In other words at any point during the run along a w.b.p. the balanced stack
contains the input stack E as a substack. This is not the case for box cycles,
who leave the box stack invariant but actually do pop tokens from the input
stack B each time the box is exited. However the computation shows that any
token popped will not be looked up, that is the following transitions will not
depend on its value, until it is pushed back when coming back to the box before
ending the cycle.

7.4.3.3 Legal paths

Recall that a final ?-cycle θ is a path of the form θ = γ1δγ2 where γ1 and γ2
are w.b.p. sourced on some dereliction nodes and δ is a !-cycle. When γ1 = γ2
we say that θ is well parenthesised. A w.b.p. γ in a proof net R is legal if any
final ?-cycle contained in γ is well parenthesised.

Theorem 7.4.18. A w.b.p. is legal iff it is regular.

Proof. Let γ be a regular w.b.p. and θ = γ1θ0γ2 be a final ?-cycle contained
in γ. As θ is final for i = 1, 2, we may decompose γi as γi = δiγ

′
i where

δi : di → ni is a descent path from a dereliction node di to the root node ni of
the corresponding exponential tree and γ′i is a w.b.p. so that θ′ = γ′iθ0γ

′
2 is an

initial ?-cycle. Since θ and θ′ are subpaths of γ that is supposed regular, θ and
θ′ are regular.

Let li be the lift of δi. By the exponential branch lemma 7.4.9 there is a ΣS
term uδi such that wδi(u ·E, u1 · · · uli ·B) = (uδi [u, u1, . . . , uli ] ·E,B) for any
stacks E and B and any tokens u, u1, . . . , uli . Since θ is regular there is some
stack E such (u ·E, u1 · · · uli ·B) ∈ dom θ and since θ′ is an initial ?-cycle, using
the box invariant theorem 7.4.16 we may compute the action of δ1θ′ as:

(u · E, u1 · · · uli ·B)
wδ1−→ (uδ1 [u, u1, . . . , uli ] · E, B)
wθ′−→ (uδ1 [u, u1, . . . , uli ] · E′, B)

By the second part of the box invariant theorem, since θ′ = γ′1θ0γ
′
2 is regular

we have γ′1 = γ′2, thus n1 = n2. Therefore Since δ1 and δ2 are maximal (because
starting from dereliction nodes) exponential branches to the root of the now
same exponential tree, if they are distinct they are finally separing thus wδ1

and wδ2 have disjoint codomains and therefore (uδ1 [u, u1, . . . , uli ] · E′, B) ̸∈
codomwδ2 , contradicting our hypothesis that (u ·E, u1 · · · uli ·B) ∈ domwθ =
domwB(δ1θ

′δ2). Thus δ1 = δ2 and therefore γ1 = γ2.
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For the converse we reason by induction on a special reduction of γ and show
that if γ is legal then it has a residual γ′ that is legal; by induction hypothesis
γ′ is thus regular and therefore by the equivalence regular/persistent, so is γ.
Let c be the cut being reduced. If c is multiplicative or an axiom cut the result
is immediate because by definition a w.b.p. cannot exchange the premises of
a multiplicative cut, thus has a unique residual, and because the reduction
preserves box cycles and w.b.p.

If c is exponential (non weakening) suppose for the contradiction that γ
has no residual. Then γ has a subpath θ that exchanges the premises a1 and
a2 of a contraction node premise of c. With the notations of the contraction
elimination step p. ??, θ has the form θ = a+1 a

+
c a

′−δa′+a−c a
−
2 where δ is a

subpath contained in the box b′. In particular a+c a′−θa′+a−c is an initial ?-cycle,
thus, since a1 ̸= a2 are distinct, θ is (contained in) a ?-cycle that is not well
parenthesised, contradicting our legality hypothesis on γ.

Therefore γ has a residual γ′. Let θ′ be a final ?-cycle contained in γ′. Then
one easily verifies that its lifting θ = Lθ′ is a final ?-cycle. With the notations of
figure 7.1 we have θ = αγ1δ0θ1δ1 . . . θkδkγ1α where α is an exponential branch
from a dereliction node d to the root node n1 of the exponential tree and θ′ =
α′γ′1δ

′
0θ

′
1δ

′
1 . . . θ

′
kδ

′
kγ

′′
1α

′′ where δ′i and θ′i are residuals of δi and θi, γ′1 and γ′′1 are
residuals of γ1 and α′ and α′′ are residuals of α. We are to show that γ′1 = γ′′1 ,
from which one immediately deduce that α′ = α′′ because both exponential
branches are rooted on the same node and are residual of the same α.

Both γ′1 and γ′′1 are targeted on the same !-node, thus have a common suffix.
Let σ′ be their longest common suffix. If γ′1 = σ′ then σ′ is a w.b.p. suffix of
the w.b.p. γ′′1 thus we must have γ′′1 = σ′: by definition of w.b.p. the suffix of
a w.b.p. is a w.b.p. only if it starts on an axiom node, which is not the case of
σ′.

If σ′ is a proper suffix of γ′1, and also by symmetry of γ′′1 , γ′1 = ρ′a′0
+
σ′ and

γ′′1 = ρ′′a′1
+
σ′ where, by maximality of σ′, a′0 and a′1 are distinct premises of a

binary node n′.
If n′ is residual of a node n, then a′0 and a′1 are residuals of the premises a0

and a1 of n and γ1 being the lift of γ′1 has the form γ1 = ρa+0 σ = ρa+1 σ where σ
is the lift of σ′, ρ is the lift of ρ′ and ρ′′. Thus a0 = a1 and therefore a′0 = a′1, a
contradiction.

Therefore n′ is a node that has been added by the reduction of c, that is a
?-node of the same type as the ?-node premise of c, lying below an auxiliary
door of (copies of) the box b premise of c.

From which we deduce that a′0 and a′1 are conclusion of some p-nodes aux-
iliary doors of (copies of) b. Since γ′1 and γ′′1 are residuals of γ1 we deduce that
γ1 exits the box b by some auxiliary door. But γ1 being a w.b.p. cannot end
downardly so after exiting b it must descend to a cut and cross this cut. Since
c is special for γ and γ1 is a subpath of γ, c is special for γ1, a contradiction.

So the only possible case is that σ′ = γ′1 = γ′′1 : thus θ′ is well parenthesised
and we have shown that γ′ is legal.
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Appendix A

Graphs

A.1 Basic definitions

We write ϵ for the empty sequence.
A graph is a quadruple G = (N ,A, s, t) where N (G) := N is the set of

nodes, A(G) := A is the set of arrows, and sG := s (the source function) and
tG := t (the target function) are maps from A to N . A graph is finite if it has
finitely many nodes and arrows. Let n be a node and a be an arrow: if s(a) = n
(resp. t(a) = n) then a is called an outgoing arrow (resp. incoming arrow)
of n. An incident arrow of n is any of an incoming or outcoming arrow.

An edge e is given by an arrow a together with a direction. We write e = a+

if e follows the arrow, and e = a− if e takes the opposite direction, meaning
that we extend s and t to the set E(G) of edges of G, by setting: s(a+) := s(a),
t(a+) := t(a), s(a−) := t(a) and t(a−) := s(a).

Let G1 = (N1,A1, s1, t1) and G2 = (N2,A2, s2, t2). We say a G2 is a sub-
graph of G1 if N2 ⊆ N1, A2 ⊆ A1, and s2 (resp. t2) is the restriction of s1
(resp. t1) to A2.

A graph morphism from G1 to G2 is given by functions fN : N1 → N2

and fA : A1 → A2 such that s2(fA(a)) = fN (s1(a)) and t2(fA(a)) = fN (t1(a))
for each a ∈ A1. We denote f := (fN , fA) : G1 → G2 in this case. We say
f is a graph isomorphism when fN and fA are bijections: in this case,
f−1 := (f−1

N , f−1
A ) is also a graph morphism, and we write f : G1 →̃ G2.

The empty graph is the only graph whose set of nodes is empty. The sum
of G1 and G2 is the graph G1 + G2 := (N1 +N2,A1 +A2, s, t) where the sum of
sets is their disjoint union, and s((i, a)) := si(a) and t((i, a)) := ti(a).

A.2 Paths

Two edges e0 and e1 are composable if the target node of e0 is the source node
of e1. A (possibly infinite) path in a graph G is a pair γ = (n, e⃗) where n is
a node (the source of the path, also noted s(γ)) and e⃗ is a (possibly infinite)

213



214 APPENDIX A. GRAPHS

sequence of edges (ei)1≤i≤N (with N ∈ N∪{∞}), such that any two consecutive
edges in e⃗ are composable:

• if N > 0 then s(e1) = n;

• and, for any 1 ≤ i < N , t(ei) = s(ei+1).

Note that we really should call these undirected paths as arrows can be crossed
forwardly or reversely; as this is the only notion of path we need we choose to
drop the undirected mention.

The length |γ| of the path is N , and we say γ is finite if |γ| ∈ N. We also
use the notation ϵn for the empty path (n, ϵ) which has length 0.

Each path γ induces a sequence of nodes of length |γ|+1: an occurrence of
a node in γ is an item in this sequence together with its rank in the sequence.
As is usual, we will often abuse terminology and call node such an occurrence. A
(occurrence of a) node n′ is internal to γ if n′ = s(ei) with i > 1 (or equivalently
n′ = t(ei) with i < N).

Let γ = (n, (ei)1≤i≤N ) be a path. The target t(γ) of γ is n if γ is empty
(N = 0), t(eN ) if γ is finite and nonempty (1 ≤ N < ∞), undefined otherwise
(N = ∞). When s(γ) = n and t(γ) = n′, we say γ is a path from n to n′.
Observe that the source and target of γ, as well as its sequence of internal nodes,
are uniquely determined by the sequence of edges of γ, unless it is an empty
path ϵn, in which case s(γ) = t(γ) = n and γ has no internal node. We will thus
often identify a path with its sequence of edges.

If γ0 = (n0, (ei)1≤i≤N0) and γ1 = (n1, (ei)N0+1≤i≤N0+N1) are two paths of
respective lengths N0 < ∞ and N1 such that t(γ0) = n1 = s(γ1), we say that
they are composable and write γ0γ1 for their composition or concatenation:

γ0γ1 = (n0, (ei)1≤i≤N0+N1)

so that s(γ0γ1) = s(γ0) = n0 and t(γ0γ1) = t(γ1) (possibly undefined). A path
γ is said to be closed if s(γ) = t(γ), and open otherwise.

A prefix (resp. suffix; subpath) of γ is any path γ′ such that we can write
γ = γ′γ2 (resp. γ = γ1γ

′; γ = γ1γ
′γ2).

When defined, composition is associative and the empty path ϵn is neutral
when composed on the left with any path of source n, on the right with any
path of target n. We thus have defined a small category G∗ on G the objects of
which are the nodes of G, the identities of which are the empty paths and the
morphisms of which are the finite paths. We call G∗ the category of paths of
G.1

We define the reverse e of an edge e by e := a− if e = a+, and e := a+ if
e = a−. Then, for any finite path γ in G with edges (ei)1≤i≤N , we define the
reverse path γ := (t(γ), (eN+1−i)1≤i≤N ) so that s(γ) = t(γ) and t(γ) = s(γ).

1Strictly speaking, G∗ is not the category freely generated by G, which is rather the category
of directed finite paths. One can consider G∗ as the free category generated by the symmetric
closure of G, whose arrows are the edges of G.
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The reverse operation is compatible with composition in the sense that:

ϵn = ϵn and,
γ0γ1 = γ1 γ0

for any finite paths γ0 and γ1. The category G∗ is thus an involutive category.
We say a path γ crosses an arrow a if either a+ or a− occurs as an edge

of γ. And we say γ crosses an edge e if e or e is a subpath of γ. A path γ
is simple if it does not cross the same arrow (or, equivalently, the same edge)
twice. We say two paths γ1 and γ2 are (arrow-)disjoint if they have no crossed
arrow in common. If t(γ1) = s(γ2) then the composition γ1γ2 is simple iff γ1
and γ2 are both simple and are disjoint. A cyclic path, also called a cycle, is
a non-empty simple path γ that is closed. A graph is said to be acyclic if it
has no cycle.

A path γ is elementary if no node occurs twice in γ, except maybe as its
source and target: in that last case, we say γ is an elementary cycle. Note
that an elementary path is always simple, and that an elementary cycle is in
particular a cycle (it is indeed non-empty because, because the empty path has
only one node occurrence).

Proposition A.2.1. A graph is acyclic iff it has no elementary cycle.

Proof. Given a cycle γ, consider any cyclic subpath γ′ of γ, of minimum length:
γ′ must be elementary.

We say two elementary paths γ1 and γ2 are elementarily composable if
they are composable and γ1γ2 is elementary, i.e.:

• t(γ1) = s(γ2) and this node has no other occurrence in γ1 nor in γ2;

• γ1 and γ2 share no internal node;

• s(γ1) does not occur in γ2, except maybe as its target;

• t(γ2) does not occur in γ1, except maybe as its source.

We write n ≃G n′ if there exists a path from n to n′.

Proposition A.2.2. There exists a path from n to n′ iff there exists a simple
(resp. elementary) path from n to n′

Proof. Given a path γ, consider any subpath γ′ of γ with the same endpoints,
of minimum length: γ′ must be elementary.

We obtain that ≃G is an equivalence relation, and say n and n′ are con-
nected in G, if n ≃G n′. A connected component of G is an equivalence
class for ≃G . A graph is connected if it is not empty and any two nodes are
connected by a path: in other words, it has exactly one connected component.
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Lemma A.2.3 (Acyclic Connected Components). In a finite acyclic graph, the
number of connected components is the number of nodes minus the number of
arrows.

Proof. By induction on the number of nodes.

• The empty graph has no node, no arrow and no connected component.

• Assume the graph contains at least one node. Let n be a node, if it has
p arrows attached to it, we remove the node and all these arrows, we lose
one node, p arrows and we create p− 1 connected components (we cannot
create more than p − 1 connected components, and if we create strictly
less than p − 1 connected components, there was a cycle in the graph).
We can then apply the induction hypothesis.

Lemma A.2.4 (Acyclicity and Connectedness). A graph with k arrows and
k + 1 nodes is acyclic if and only if it is connected.

Proof. If the graph is acyclic, we apply Lemma A.2.3. If the graph is connected,
we go by induction on the number of nodes:

• If there is 1 node, there is no arrow and the graph is acyclic.

• If there are at least k ≥ 2 nodes, there are k−1 arrows. By connectedness
each node has at least one arrow attached to it. Each arrow touches at
most two nodes thus there must be a node n which is an endpoint of only
one arrow a. We erase n and a, and we apply the induction hypothesis.

A path γ is directed if it contains no reversed arrow. A directed cycle is
then a cycle that is also a directed path. A directed acyclic graph is a graph
with no directed cycle. Setting n ≼G n′ if there exists a directed path in G from
n to n′, we obtain that ≼G is a preorder relation. Moreover, this preorder is an
order iff G is directed acyclic.

Examples: path, length, cycle, connected component TODO
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Abstract Reduction Systems

We present some basic results about rewriting theory in the setting of abstract
reduction systems. The material presented here is strongly inspired from [32].

B.1 Definitions and Notations
An abstract reduction system (ARS) A is a pair (A,→) where A is a set
and → is a binary relation on A (i.e. a subset of A×A).

Given an ARS A = (A,→), we use the following notations:

• a→ b if (a, b) ∈ →. b is called a 1-step reduct of a.

• a← b if b→ a.

• a→= b if a = b or a→ b (→= is the reflexive closure of →).

• a→+ b if there exists a finite sequence (ak)0≤k≤N (N ≥ 1) of elements of
A such that a = a0, aN = b and for 0 ≤ k ≤ N − 1, ak → ak+1 (→+ is
the transitive closure of →).

• a→∗ b if a = b or a→+ b (→∗ is the reflexive transitive closure of →). b
is called a reduct of a.

• a ≃ b if there exists a finite sequence (ak)0≤k≤N (N ≥ 0) of elements of A
such that a = a0, aN = b and for 0 ≤ k ≤ N −1, ak → ak+1 or ak ← ak+1

(≃ is the reflexive symmetric transitive closure of →).

• If a is an element of A, the restriction of A to a is the ARS A ↾a =
(A ↾a,→∩ (A ↾a × A ↾a)) where A ↾a = {b ∈ A | a →∗ b} (i.e. the set of
all reducts of a).

A sequence (ak)0≤k<N (with N ∈ N such that N ≥ 1, or N = ∞) of elements
of A, such that ak−1 → ak for each 0 < k < N , is called a reduction sequence
(starting from a0 and ending on aN−1, if N ̸=∞). When N ∈ N, the reduction
sequence is finite and its length is N − 1. We use the notation a→k b if there
exists a finite reduction sequence of length k starting from a and ending on b.
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B.2 Confluence

An ARS (A,→) has the diamond property if for any a, b and c in A with
a → b and a → c, there exists some d in A such that both b → d and c → d.
Thus diagrammatically:

a

b c

d

An ARS (A,→) is sub-confluent if for any a, b and c in A with a→ b and
a → c, there exists some d in A such that both b →= d and c →= d. Thus
diagrammatically:

a

b c

d= =

An ARS (A,→) is locally confluent if for any a, b and c in A with a → b
and a → c, there exists some d in A such that both b →∗ d and c →∗ d. Thus
diagrammatically:

a

b c

d∗ ∗

An ARS (A,→) is confluent if for any a, b and c in A with a →∗ b and
a →∗ c, there exists some d in A such that both b →∗ d and c →∗ d. Thus
diagrammatically:

a

b c

d

∗ ∗

∗ ∗

An ARS (A,→) is thus confluent if (A,→∗) has the diamond property.
A normal form in an ARS (A,→) is an element a of A such that there is

no b in A with a→ b (i.e. a has no reduct, but itself). A →-minimal element
is a normal form of (A,←).
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An ARS (A,→) has the (weak) unique normal form property if for any
a in A and any two normal forms b and c in A with a→∗ b and a→∗ c, we have
b = c. Thus diagrammatically:

a

b c
∗ ∗

/ /

Proposition B.2.1 (Confluence Properties). For any ARS,

• diamond property =⇒ sub-confluent =⇒ confluent =⇒ locally confluent,

• confluent =⇒ unique normal form.

Proof. We prove the four implications:

• If a → b and a → c, the diamond property gives some d such that b → d
and c→ d, thus b→= d and c→= d.

• By induction on the length of the reduction sequence from a to b. The
following figure might help.

a

.

a . c

. .

d

∗

∗

= = ∗ ∗

∗ ∗

– If a = b, we have b→∗ c and c→∗ c.

– If a→ b, we use an induction on the length of the reduction sequence
from a to c:

∗ If a = c, we have b→∗ b and c→∗ b.
∗ If a→ c, by sub-confluence, there exists d such that b→= d and
c→= d.

∗ If a → c′ and c′ →∗ c, by sub-confluence, we have some d′ such
that b →= d′ and c′ →= d′. If c′ = d′ we have b →∗ c and
c →∗ c. If c′ → d′, by induction hypothesis, there exists d such
that d′ →∗ d and c→∗ d (thus b→∗ d).
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– If a→∗ a′ and a′ → b, by induction hypothesis we have d′ such that
a′ →∗ d′ and c →∗ d′. By the case above, there exists d such that
b→∗ d and d′ →∗ d. We then conclude with c→∗ d.

• If a→ b and a→ c, confluence gives some d such that b→∗ d and c→∗ d.

• If a →∗ b and a →∗ c with b and c normal forms, confluence gives some
d such that b →∗ d and c →∗ d. But since b and c are normal forms, we
must have b = d and c = d.

B.3 Normalization
An ARS (A,→) is weakly normalizing if for any a in A there exists a normal
form b in A such that a→∗ b (b is a reduct of a).

An ARS (A,→) is well founded if every non-empty subset of A contains a
→-minimal element.

Lemma B.3.1 (Well Foundedness). An ARS (A,→) is well founded if and only
if it satisfies the following induction principle:

∀P (∀b ((∀a (a→ b)⇒ Pa)⇒ Pb))⇒ ∀b Pb

Proof. In the first direction, given a predicate P such that ∀b ((∀a (a → b) ⇒
Pa) ⇒ Pb), we define B to be {a ∈ A | ¬Pa}. If B is empty we are done:
P is valid for all the elements of A. Otherwise, by well foundedness, B has a
→-minimal element b. The hypothesis on P thus gives us Pb which contradicts
the fact that b ∈ B.

In the second direction, given a subset B of A with no →-minimal element,
we show that B is empty. We define the predicate Px as x /∈ B: to prove that
B is empty, by induction it sufficient to prove ∀b ((∀a (a → b) ⇒ Pa) ⇒ Pb)).
Let b be such that ∀a (a → b) ⇒ Pa, that is ∀a(a → b) ⇒ (a /∈ B). As a
consequence, if b ∈ B, it is →-minimal in B, a contradiction. Hence b /∈ B,
which establishes the induction.

An ARS (A,→) is strongly normalizing if (A,←) is well founded. That is
any non-empty subset B of A contains an element with no 1-step reduct in B.

An ARS is convergent if it is both confluent and strongly normalizing.

Lemma B.3.2 (Descending Chain Condition). A strongly normalizing ARS
(A,→) does not contain any infinite reduction sequence.

Proof. Let (ak)0≤k<∞ be an infinite reduction sequence, we define B = {a ∈
A | ∃k ∈ N, a = ak}. B is not empty since a0 ∈ B, thus it contains an element
b with no 1-step reduct in B. There exists some k such that b = ak and thus
b→ ak+1, a contradiction.

The converse property is a consequence of the Axiom of Dependent Choices.
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Lemma B.3.3 (Transitive Strong Normalization). If (A,→) is strongly nor-
malizing then (A,→+) is strongly normalizing.

Proof. Let B be an non-empty subset of A, we define B′ = {a ∈ A | ∃b ∈
B, a →∗ b}. B′ is not empty (B ⊆ B′) thus B′ contains an element b with no
1-step reduct for→ in B′. Since b→∗ c with c ∈ B implies b = c (if b→ b′ →∗ c
then b′ is in B′ and is a 1-step reduct of b), we have b ∈ B and b has no 1-step
reduct for →+ in B.

An ARS (A,→) is µ-decreasing if µ is a function from A to a set with a
well founded relation < such that whenever a→ b, we have µ(a) > µ(b).

An ARS (A,→) is weakly µ-decreasing if µ is a function from A to a set
with a well founded relation < such that, for any a in A which is not a normal
form, there exists some b in A such that a→ b and µ(a) > µ(b).

An ARS (A,→) is µ-increasing if µ is a function from A to N such that
whenever a→ b, we have µ(a) < µ(b).

Proposition B.3.4 (Normalization Properties). For any ARS, µ-decreasing
for some µ =⇒ strongly normalizing =⇒ weakly µ-decreasing for some µ =⇒
weakly normalizing.

Proof. Let A = (A,→) be an ARS.

• Let B be a non-empty subset of A and E be its image by µ. E is a
non-empty set and < is a well founded relation thus E has a <-minimal
element e. Let b be such that µ(b) = e, b has no 1-step reduct in B
otherwise we would have b → c and thus e = µ(b) > µ(c) with µ(c) ∈ E
contradicting the <-minimality of e in E.

• Since A is strongly normalizing, it is id-decreasing where id is the identity
function. If a is not a normal form, let b be any 1-step reduct of a, we
have id(a)→ id(b).

• Given an a in A, µ(A ↾a ) is a non-empty set (µ(a) ∈ µ(A ↾a )) and
< is a well founded relation thus µ(A ↾a ) has a <-minimal element e.
Let c be such that µ(c) = e, a →∗ c since c ∈ A ↾a , and c is a normal
form. Otherwise there exists d such that c → d and e = µ(c) > µ(d)
contradicting the <-minimality of e in µ(A ↾a ).

Proposition B.3.5 (Weak Normalization and Confluence). For any ARS, weakly
normalizing ∧ unique normal form =⇒ confluent.

Proof. If a →∗ b and a →∗ c, by weak normalization, there exist two normal
forms b′ and c′ such that b →∗ b′ and c →∗ c′, thus a →∗ b′ and a →∗ c′. By
uniqueness of the normal form, we have b′ = c′.

Proposition B.3.6 (Newman’s Lemma). For any ARS, strongly normalizing
∧ locally confluent =⇒ confluent.
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Proof. Let A = (A,→) be a strongly normalizing and locally confluent ARS,
since the relation← is well founded, we can reason by induction on it (Lemma B.3.1).
We prove this way that for any a, A ↾a is confluent. We assume that for any
1-step reduct a′ of a, A ↾a′ is confluent. Assume a →∗ b and a →∗ c. If a = b
or a = c the result is immediate. If a → b′ →∗ b and a → c′ →∗ c, by local
confluence, we have d′ such that b′ →∗ d′ and c′ →∗ d′. By confluence of A ↾b′ ,
there exists d′′ such that b →∗ d′′ and d′ →∗ d′′, thus c′ →∗ d′′. By confluence
of A ↾c′ , there exists d such that d′′ →∗ d and c →∗ d, thus b →∗ d and we
conclude.

a

b′ c′

b d′ c

d′

d

∗
∗ ∗

∗

∗ ∗

∗∗

Proposition B.3.7 (Increasing Normalization). For any ARS and any µ, lo-
cally confluent ∧ µ-increasing ∧ weakly normalizing =⇒ strongly normalizing.

Proof. Let A = (A,→) be an ARS, we first prove by induction on k that a→∗ b
with b normal form and µ(b)− µ(a) ≤ k implies A ↾a is strongly normalizing.

• If k = 0, a is a normal form, A ↾a = {a} and the result is immediate.

• If k > 0, we can decompose the reduction sequence from a to b into
a→ c→∗ b. We have µ(c) > µ(a) thus µ(b)−µ(c) < k with c→∗ b and, by
induction hypothesis, A ↾c is strongly normalizing. By Propositions B.3.6
and B.2.1, A ↾c also has the unique normal form property.

Let d be an arbitrary 1-step reduct of a, by local confluence, there exists
some e such that both c →∗ e and d →∗ e. By weak normalization, let
f be a normal from of e, we necessarily have f = b (unique normal form
of c) thus d →∗ b, µ(b) − µ(d) < k (since µ(d) > µ(a)) and, by induction
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hypothesis, A ↾d is strongly normalizing.

a c b

d e f

∗

∗

/

∗ ∗ /

Now let B be an non-empty subset of A ↾a . If a is in B and has no 1-step
reduct in B, we are done. Otherwise, we have a → d →∗ b for some d
and some b ∈ B. We have proved that A ↾d is strongly normalizing. We
define B′ = B ∩ A ↾d . B′ is a non-empty set since it contains b and thus
it has an element c with no 1-step reduct in B′. c also belongs to B and
has no 1-step reduct in B by construction (c is a reduct of d so any reduct
of c is a reduct of d as well).

Given a non-empty subset B of A, let a be an element of B, by weak normal-
ization, a has a normal form b thus A ↾a is strongly normalizing. By defining
B′ = B ∩ A ↾a , we prove just as above that B contains an element with no
1-step reduct in B, showing that A is strongly normalizing.

B.4 Simulation

Let A = (A,→A) and B = (B,→B) be two ARSs, a function φ from A to B is
a simulation if for every a and a′ in A, a→A a

′ entails φ(a)→∗
B φ(a′). It is a

strict simulation if a→A a
′ entails φ(a)→+

B φ(a′).

Proposition B.4.1 (Anti Simulation of Strong Normalization). If φ is a strict
simulation from A to B and B is strongly normalizing, then A is strongly nor-
malizing as well.

Proof. By Lemma B.3.3, (B,→+
B) is strongly normalizing, thus ←+ is a well

founded relation. We can conclude with Proposition B.3.4 since A is then φ-
decreasing.

Proposition B.4.2 (Anti Simulation of Unique Normal Form). If φ is a sim-
ulation from A to B which preserves normal forms ( i.e. if a is a normal form
in A then φ(a) is a normal form in B) and is injective on normal forms ( i.e.
no two different normal forms of A have the same image through φ), then the
unique normal form property for B entails the unique normal form property for
A.

Proof. Assume b and c are normal forms with a →∗
A b and a →∗

A c, then
φ(a)→∗

B φ(b) and φ(a)→∗
B φ(c) with φ(b) and φ(c) normal forms. This entails

φ(b) = φ(c) by unique normal form for B, and finally b = c since φ is injective
on normal forms.
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B.5 Commutation
In this section, we consider two ARSs A = (A,→A) and B = (A,→B) on the
same set A.

The ARS A ▷◁ B is defined as (A,→A▷◁B) with →A▷◁B = →A ∪ →B. Note
that →∗

A▷◁B = (→∗
A ∪→∗

B)
∗

We say that A and B sub-commute if for any a, b and c in A such that
a →A b and a →B c, there exists d such that b →=

B d and c →=
A d. Thus

diagrammatically:
a

b c

d

A B

B
=

A
=

With this definition, an ARS is sub-confluent if it sub-commutes with itself.
We say that A and B locally commute if for any a, b and c in A such

that a →A b and a →B c, there exists d such that b →∗
B d and c →∗

A d. Thus
diagrammatically:

a

b c

d

A B

B
∗

A
∗

With this definition, an ARS is locally confluent if it locally commutes with itself.
We say that A quasi-commutes over B, if for any a, b and c in A such

that a→A b and b→B c, there exists d such that a→B d and d→∗
A▷◁B c. Thus

diagrammatically:
a

b d

c

A B

B A▷◁B
∗

Proposition B.5.1 (Commutation of Strong Normalization). If A = (A,→A)
and B = (A,→B) are two ARSs, and A quasi-commutes over B then if A and
B are strongly normalizing then A ▷◁ B is strongly normalizing.

Proof. Let B0 be a non-empty subset of A, we define B = {a ∈ A | ∃b ∈
B0, a→∗

A▷◁B b} which is non-empty as well (B0 ⊆ B) and is such that a→∗
A▷◁B b

with b ∈ B entails a ∈ B. By strong normalization of B, the subset B′ of B
containing the elements of B with no 1-step →B-reduct in B is not empty. By



B.5. COMMUTATION 225

strong normalization of A, B′ contains an element a with no 1-step →A-reduct
in B′. If a has no 1-step →A-reduct in B, we have an element with no 1-step
→A▷◁B-reduct in B. Otherwise a→A b for some b which is in B and not in B′

thus there exists c ∈ B such that b →B c. By quasi-commutation, we have d
such that a→B d→∗

A▷◁B c. We have d ∈ B since d→∗
A▷◁B c but this contradicts

the fact that a ∈ B′.
This means a cannot have a 1-step →A▷◁B-reduct in B, so that a belongs to

B0 and has no 1-step →A▷◁B-reduct in B0.
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Appendix C

Basic concepts of category
theory

C.1 Categories, functors and natural transforma-
tions

A category C consists of:

• a class of objects Obj(C)

• for each X,Y ∈ Obj(C), of a class of morphisms C(X,Y ) from X to Y ,

• for each X ∈ Obj(C), of a special element IdX of C(X,X) called identity
at X

• and, for each triple (X,Y, Z) ∈ C3, of a composition operation

◦ : C(X,Y )× C(Y,Z) → C(X,Z)
(f, g) 7→ g ◦ f

such that the following equations hold (for f ∈ C(X,Y ), g ∈ C(Y,Z) and h ∈
C(Z, V )):

f ◦ IdX = f IdY ◦ f = f h ◦ (g ◦ f) = (h ◦ g) ◦ f

We often denote composition as simple juxtaposition and IdX as X.

Example C.1.1. The category Set has sets as objects and functions as mor-
phisms. It underlies most categories whose objects are sets endowed with a
structure and morphisms are functions “preserving” this structure in some sense,
for instance:

• monoids and homomorphisms of monoids

227
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• groups and homomorphisms of groups

• given a field, vector spaces on this field and linear functions

• topological spaces and continuous functions.

Example C.1.2. The category Rel is less usual but very important for us. Its
objects are sets but now Rel(X,Y ) = P(X × Y ), whose elements are seen as
relations from X to Y , IdX is the diagonal relation IdX = {(a, a) | a ∈ X} and
composition is the ordinary composition of relations: given s ∈ Rel(X,Y ) and
t ∈ Rel(Y,Z), then

t ◦ s = {(a, c) | ∃b ∈ Y (a, b) ∈ s et (b, c) ∈ t} .

We denote this composition by simple juxtaposition t s as a product, and IdX
as X. An example of categories built in that way is the category whose objects
are finite sets and a morphism from I to J is an I×J matrix with coefficients in
some (semi-)ring, composition being defined as the usual product of matrices.

We should think of Rel as of an (over)simplification of the categories of
vector spaces – or more accurately, vector spaces given with a choice of basis –
and linear maps seen as matrices. In this category we can see an element of
Rel(X,Y ) as a linear map from the free module generated by X to the free
module generated by Y over the semi-ring of coefficients {0, 1} with 1 + 1 = 1.
This model has the virtue of featuring a concrete notion of linearity (composition
of relations commutes with their unions) which illustrate in a very simple way
the kind of linearity that Linear Logic axiomatizes logically.

An isomorphism is a morphism f ∈ C(X,Y ) such that there is a morphism
g ∈ C(Y,X) such that g ◦ f = IdX and f ◦ g = IdY . If g and g′ satisfy these
conditions then g = g ◦ IdY = g ◦ (f ◦ g′) = (g ◦ f) ◦ g′ = IdX ◦ g′ = g′ by the
equations above and hence g is fully determined by f and is denoted as f−1.

The opposite category of C is the category Cop given by Obj(Cop) = Obj(C)
and Cop(X,Y ) = C(Y,X). The identities are the same and composition is
defined in the obvious way (reversing the order of factors).

The product
∏
i∈I Ci of a family of categories (Ci)i∈I has the families

−→
X =

(Xi ∈ Obj(I))i∈I and an element of
∏
i∈I Ci(

−→
X,
−→
Y ) is a family (fi ∈ Ci(Xi, Yi)).

Identities and composition are defined in the obvious componentwise manner.

C.1.1 Functors
Let C and D be categories. A functor F from C to D is an operation which

• maps any object X of C to an object F (X) of D

• and any morphism f ∈ C(X,Y ) to a morphism F (f) ∈ C(F (X), F (Y )

such that, for any X,Y, Z ∈ Obj(C) and f ∈ C(X,Y ) and g ∈ C(Y,Z):

F (IdX) = IdF (X) F (g ◦ f) = F (g) ◦ F (f) .
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Notice that F induces trivially a morphisms Cop → Dop defined exactly as F on
object and morphisms, this functor is also denoted F .

A contravariant functor from C to D is a functor from Cop to D (or, equiva-
lently, from C to Dop).

A functor F : C → D is full if, for anyX,Y ∈ Obj(C), the function C(X,Y )→
D(F (X), F (Y )) which maps f to F (f) is surjective. It is faithful if this function
is injective.

For instance, the functor P from Rel to Set which maps a set X to P(X)
and a relation s ∈ Rel(X,Y ) to the function P (s) : P(X) → P(Y ) given by
P (s)(u) = {b ∈ Y | ∃a ∈ u (a, b) ∈ s} is a functor from Rel to Set. This functor
is faithful but not full.

For any category C, there is a functor HomC : Cop × C → Set defined on
objects by HomC(X,Y ) = C(X,Y ) and on morphisms by

HomC(f, g) : C(X,Y )→ C(X ′, Y ′)

h 7→ g ◦ h ◦ f

for g ∈ D(Y, Y ′) and f ∈ C(X ′, X).

C.1.2 Natural transformations
Let F,G : C → D be functors. A natural transformation from F to G is a
family T = (TX)X∈Obj(C) of morphisms such that, for each X ∈ Obj(C) one has
TX ∈ D(F (X), G(X)) and such that, for each f ∈ C(X,Y ), one has G(f) ◦
TX = TY ◦ F (f). This is expressed by saying that the following diagram
commutes:

F (X) G(X)

F (Y ) G(Y )

TX

F (f) G(f)

TY

this means that the composition of morphisms on both sides coincide. One
writes S : F

•→ G. Let F,G,H : C → D be three functors. If S : F
•→ G

and T : G
•→ H, one defines T ◦ S : F

•→ H par (T ◦ S)X = TX ◦ SX .
In that way one defines the category DC of functors and natural transforma-
tions. This composition is often called the horizontal composition of natural
transformations.

Exercise C.1.3. Let F, F ′ : C → D and G,G′ : D → E be functors. Let
S : F

•→ F ′ and T : G
•→ G′ be natural transformations. Let X ∈ Obj(C).

Prove that G′(SX) ◦ TF (X) = TF ′(X) ◦ G(SX). One denote as (T ∗ S)X ∈
E(G(F (X)), G′(F ′(X))) the morphism so defined. Prove that T ∗ S is a natu-
ral transformation G ◦ F •→ G′ ◦ F ′. Prove that this operation is associative
and give its neutral element. It is called vertical composition of natural trans-
formations. Let F ′′ : C → D and G′′ : D → E be two other functors and
S′ : F ′ •→ F ′′ and T ′ : G′ •→ G′′ be two other natural transformations. Prove
that (T ′ ◦ T ) ∗ (S′ ◦ S) = (T ′ ∗ S′) ◦ (T ∗ S). This property is called
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exchange law. The category of categories, with functors as morphisms and nat-
ural transformations as morphisms between morphisms, with these two laws of
composition, is a 2-category .

C.2 Limits and colimits

C.2.1 Projective limits (limits)
C.2.1.1 Terminal objects.

An object T of a cetagory C is terminal if, for any object X of C, the set
C(X,T ) has exactly one element. Let T and T ′ be terminal objects of C. Let f
be the unique element of C(T ′, T ) and f ′ the unique element of C(T, T ′). Since
C(T, T ) = {IdT }, we must have f ◦ f ′ = IdT and also f ′ ◦ f = IdT ′ . In other
words, there is exactly one morphism from T to T ′, and this morphism is an
iso. It is a very strong way to say that, if a category has a terminal object, this
object is unique up to unique iso.

Terminal objects are a very special case of projective limit as we shall see,
but, choosing the suitable category, any projective limit can be seen as a terminal
object (this seems to be a general pattern of category theory: any universal
notion is more general than any other universal notion).

C.2.1.2 General limits

Let C be a category and I be a small category (that is, such that Obj(I) is a set).
There is an obvious functor ∆ : C → CI which maps an object X of C to the
constant functor defined by ∆(X)(i) = X and ∆(X)(u) = IdX . Let D : I → C
be a functor (such a “small” functor is sometimes called a diagram). A projective
cone based on D is a pair (X, p) where X ∈ Obj(C) and p : ∆(X)

•→ D. In other
words it consists of the following data: the object X, and, for any i ∈ Obj(I), a
mophism pi ∈ C(X,D(i)) such that, for each φ ∈ I(i, j), one has D(φ) ◦ pi = fj .

Let (X, p) and (Y, q) be projective cones based on D. A cone morphism from
(X, p) to (Y, q) is an h ∈ C(X,Y ) such that, for each i ∈ I, one has qi ◦ h = pi.
In that way we define a category CD. A limiting projective cone on D is a
terminal object of the category CD.

In other words, a limiting projective cone based on D is a projective cone
(P, p) based on D such that, for any other cone (X, q) based on D, there is
exactly one h ∈ C(P,X) such that ∀i ∈ I pi ◦ h = qi. A limiting projective cone
based on D is also simply called a (projective, or inverse) limit of D.

Proposition C.2.1. Let (Y, (qi)i∈I) and (Y ′, (q′i)i∈I) be projective limits of
the diagram D. Then there is exactly one morphism g ∈ C(Y, Y ′) such that
∀i ∈ I q′i ◦ g = qi. Moreover, g is an iso.

This is a rephrasing of the fact that a projective limit is a terminal object
in the category of cones. Because of this strong uniqueness property one often
uses the notation lim←−D to denote this limit when it exists. Remember that, to
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be fully specified, a limit must be given as an object P together with a family
of morphisms (pi)i∈Obj(I) (the projective cone) which can be seen as some kind
of “projections” from P to the objects of the diagram D, whence the adjective
“projective”.

Proposition C.2.2. Assume that all diagrams D ∈ Obj(CI) have a projective
limit (lim←−D, (p

D
i )i∈Obj(I)). Then there is exactly one functor L : CI → C such

that L(D) = lim←−D and, for each T ∈ CI(D,E), the following triangle commutes
for each i ∈ Obj(I):

lim←−D lim←−E

D(i) E(i)

L(T )

pDi pEi

Ti

Proof. Observe that (lim←−D, (Ti ◦ p
D
i )i∈Obj(I)) is a projective cone on E and

apply the universal property of the cone (lim←−E, (p
E
i )i∈Obj(I)).

Here are a few examples of projective limits.

Example C.2.3. If I is a discrete category , that is a category whose only mor-
phisms are the identities (and therefore can be considered as a bare set since it
is small), then D is just an I-indexed family of objects of C. In that case, when
the projective limit (P, (pri)i∈I) of D exists, it is called the cartesian product
of the family D and the morphisms pri ∈ C(P,Di) are called the projections.
We will often use &i∈I Di to denote the object P . Special cases: if I = ∅, the
projective limit consists simply of an object ⊤ characterized by the fact that,
for any object X of C, the set C(X,⊤) is a singleton, whose unique element will
be denoted astX . In other words, ⊤ is a terminal object of C. A category is
cartesian if all finite families of objects have a cartesian product.

Assume that C is cartesian. The operation (X1, X2) 7→ X1 & X2 can be
turned into a functor C2 → C by Proposition C.2.2: let fi ∈ C(Xi, Yi) for i = 1, 2.
We have fi ◦ pri ∈ C(X1 & X2, Xi) and hence there is a unique morphism
f1 & f2 ∈ C(X1 & X2, Yi) such that pri ◦ (f1 & f2) = fi ◦ pri for i = 1, 2 and the
operation which maps (X1, X2) to X1 & X2 and (f1, f2) ∈ C(X1, Y1)×C(X2, Y2)
to f1 & f2 is a functor.

Example C.2.4. Let I be the category such that Obj(I) = {1, 2} and I(1, 2) =
{α, β}. A diagram is given by two objects X and Y of C and two morphisms
f, g ∈ C(X,Y ). A projective limit of this diagram consists of an object E and
a morphism e ∈ C(E,X) such that f ◦ e = g ◦ e and, for any object Z of C
and any morphism h ∈ C(Z,X) such that f ◦ h = g ◦ h, there is exactly one
morphism h0 ∈ C(Z,E) such that h = e ◦ h0. Such a limit is called an equalizer
of f and g.

From now on, we drop the adjective “projective” and simply use the word
limit and cone to refer to projective limits and cones.
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C.2.1.3 Cartesian closed categories

Let C be a cartesian category. Let X,Y ∈ Obj(C). An internal hom from X to
Y is a pair (E, e) where E is an object of C and e ∈ C(E & X,Y ) are such that,
for any Z ∈ Obj(C) and for any f ∈ C(Z & X,Y ) there is a unique f ′ ∈ C(Z,E)
such that e ◦ (f ′ & IdX) = f . Being given by a universal property, an internal
hom is unique up to unique morphism which is an isomorphism.

More precisely let (E′, e′) be another internal hom from X to Y . Since e′ ∈
C(E′ & X,Y ) there is a unique h′ ∈ C(E′, E) such that e ◦ (h & IdX) = e′ and
for the same reason there is a unique h′ ∈ C(E,E′) such that e′ ◦ (h′ & IdX) = e.
Therefore we have e ◦ ((h ◦ h′) & IdX) = e, and since e ◦ (IdE & IdX) = e, we
have h ◦ h′ = IdE and for the same reason h′ ◦ h = IdE′ , hence h is an iso with
h′ as inverse.

So we can introduce notations: this internal hom (or rather, a choice of
internal hom) from X to Y will be denoted as (X ⇒ Y,EvX,Y ), X ⇒ Y is
called internal hom object , Ev is called the evaluation map, or application and
if f ∈ C(Z & X,Y ), the unique morphism h : C(Z,X ⇒ Y ) such that Ev ◦
(h & IdX) will be denoted as Cur(f) and called curryfication of f , in reference
to Haskell Curry, father of the λ-calculus.

These constructions can be characterized by a system of three equations:

Ev ◦ (Cur(f) & IdX) = f

Cur(f) ◦ g = Cur(f ◦ (g & IdX)) where g ∈ C(Z ′, Z)

Cur(Ev) = IdX⇒Y .

(C.1)

It can be easier to check these equations than directly the universal property.

Exercise C.2.5. Let X,Y ∈ Obj(C). Let CX,Y be the following category: an
object of CX,Y is a pair (Z, f) where Z ∈ Obj(C) and f ∈ C(Z & X,Y ). The
homset CX,Y ((Z, f), (Z ′, f ′)) is the set of all g ∈ C(Z,Z ′) such that f ′ ◦ (g &
IdX) = f . Prove that we have defined a category in that way, and that an
internal hom from X to Y is a terminal object in that category.

Exercise C.2.6. Prove that Set is cartesian closed and that Rel has all small
products but is not cartesian closed.

C.2.1.4 Inductive limits (colimits)

The definition of colimits (or inductive limits) is obtained by reversing all arrows,
in other words, a colimit in C is the same thing as a limit in Cop. Since these
are very important concept, we spell out the corresponding definitions.

An initial object in C is an object Z of C such C(Z,X) is a singleton for any
object X.

As above, I is a small category. Given a diagram D ∈ CI , a cocone based
on D is a pair (X, e) where X ∈ Obj(C) and e is a natural transformation
e : D

•→ ∆(X). In other words, it is a pair (X, (ei)i∈Obj(I)) where ei ∈ C(D(i), X)
for each i ∈ Obj(I) and, given φ ∈ I(i, j), one has φ ◦ ei = ej . A morphism
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from the cocone (X, (ei)i∈Obj(I)) to the cocone (Y, (fi)i∈Obj(I)) based on D is a
morphism g ∈ C(X,Y ) such that fi ◦ g = ei for all i ∈ Obj(I).

A cocone (X, (ei)i∈Obj(I)) is a colimit cocone if it is an initial object in the
category of cocones, in other words: for any cocone (Y, (fi)i∈Obj(I)) based on D
there is a unique morphism g ∈ C(X,Y ) such that fi ◦ g = ei for all i ∈ Obj(I).

When I is a discrete category (that is, a set), the colimit of a diagram on
I, that is, of a family (Xi)i∈I of objects of C, is an object ⊕i∈I Xi together
with injection morphisms (ini ∈ C(Xi,⊕j∈I Xj))i∈I such that, for any family
of morphisms (fi ∈ C(Xi, Y ))i∈I there is exactly one morphism f = [fi]i∈I ∈
C(⊕i∈I Xi, Y ) such that f ◦ ini = fi for all i ∈ I. Then (⊕i∈I Xi, (ini)i∈I) is the
coproduct of the Xi’s.

When I = ∅, this coproduct (of the empty family of objects), is denoted as
0, which is the initial object of C. We use zX or simply z for the unique element
C(0, X).

C.3 Adjunctions
Let C and D be categories. Let L : C → D and R : D → C be functors. Observe
that we have two functors

HomD ◦ (L× IdD),HomC ◦ (IdC ×R) : Cop ×D → Set

An adjuction between C and D is a triple (L,R,Φ) where L : C → D and
R : D → C are functors and Φ : HomD ◦ (L × IdD)

•→ HomC ◦ (IdC ×R) is a
natural bijection. In other words, for any A ∈ Obj(C) and X ∈ Obj(D) we are
given a bijection

ΦA,X : D(L(A), X)→ C(A,R(X))

such that, if φ ∈ C(A′, A) and f ∈ D(X,X ′), one has, for each g ∈ D(L(A), X):

ΦA′,X′(f ◦ g ◦ L(φ)) = R(f) ◦ ΦA,X(g) ◦ φ

Very often in this situation one writes L ⊣ R and keep the natural bijection Φ
but one has to keep in mind that it is part of the adjunction.

One defines the morphisms

ηA = ΦA,L(A)(IdL(A)) ∈ C(A,RL(A))
and εX = Φ−1

R(X),X(IdR(X)) ∈ D(LR(X), X)

called respectively unit and counit of the adjunction. They are natural trans-
formations η : IdC

•→ RL and ε : LR •→ IdD and satisfy the following equations:

R(εX) ◦ ηR(X) = IdR(X)

εL(A) ◦ L(ηA) = IdL(A) .

Moreover, the data of two functors L : C → D, R : D → C and two natural
transformations η : IdC

•→ RL and ε : LR •→ IdD satisfying the equations above
induce uniquely an adjunction of which these two natural transformations are
the unit and counit.
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C.4 Monads and comonads
Let C be a category. A monad on C is a triple (T, ε, µ) where T : C → C is a
functor, ε : IdC

•→ T and µ : T 2 = T ◦ T •→ T are natural transformations. One
requires moreover the following commutations..

T (X) T 2(X)

T (X)

εT (X)

IdT (X)

µX

T (X) T 2(X)

T (X)

T (εX)

IdT (X)

µX

T 3(X) T 2(X)

T 2(X) T (X)

T (µX)

µT (X) µX

µX

One defines first the category of T -algebras CT , also called the Eilenberg-Moore
category of T : the objects of CT are the pairs (X,h) where X ∈ Obj(C) and
h ∈ C(T (X), X) such that the following diagrams commute.

X T (X)

X

εX

IdX
h

T 2(X) T (X)

T (X) X

T (h)

µX h

h

The elements of CT ((X,h), (Y, k)) are the f ∈ C(X,Y ) such that the following
diagram commutes.

T (X) X

T (Y ) Y

h

T (f) f

k

One defines next the category of free T -algebras, or Kleisli cetegory , denoted
as CT . First one sets Obj(CT ) = Obj(C). Then CT (X,Y ) = C(X,T (Y )). In this
category, the identity at X is IdKX = εX and composition is defined in the
following way. Let f ∈ CT (X,Y ) = C(X,T (Y )) and g ∈ CT (Y,Z) = C(Y, T (Z)).
Then

g ◦K f = µZ ◦ T (g) ◦ f .

Exercise C.4.1. Prove that we have defined a category CT .
Exercise C.4.2. If X is an object of C, check that (T (X), µX) is a T -algebra.
It is called the free T -algebra generated by X and denoted here as F (X). Let
f ∈ CT (X,Y ). We set F (f) = µY ◦ T (f). Prove that, in that way, one has
defined a functor F : CT → CT . Prove that this functor is full and faithful.
Exercise C.4.3. Let M : Set → Set the functor which, with any set X, asso-
ciates the set M(X) of all finite sequences ⟨a1, . . . , an⟩ of elements of X and with
any function f : X → Y associates the function M(f) : M(X) → M(Y ) which
maps ⟨a1, . . . , an⟩ to ⟨f(a1), . . . , f(an)⟩. If X is a set, one defines εX : X →
M(X) as the functions which maps a to ⟨a⟩, and µX : M(M(X)) → M(X) as
the function which maps a sequence ⟨m1, . . . ,mn⟩ of finite sequences of elements
of X to their concatenation m1 · · · mn.
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• Prove that ε and µ are natural transformations.

• Prove that (M, ε, µ) is a monad.

• Prove that SetM is the category of monoids and morphisms of monoids.

• Explain why SetM can be considered as the category of free monoids and
morphisms of monoids.

Exercise C.4.4. Let P : Set → Set be the functor which maps a set X to its
powerset P(X) and f ∈ Set(X,Y ) to the function P(f) : P(X) → P(Y ) such
that P(f)(x) = {f(a) | a ∈ X}. Check that P is a functor. Find a structure of
monad for this functor such that that category SetP is isomorphic to Rel.

Prove that the Eilenberg-Moore category of P is a the category of com-
plete sup-semilattices and functions which commute with all suprema. Give an
explicit description of the “inclusion” of the category Rel in the category of
complete lattices.

Reversing the direction of all arrows, we obtain the notion of comonad and
of Eilenberg-Moore and Kleisli categories of a comonad. Since comonads will be
quite important in the sequel, we spell out these definitions. A comonad on C is
a triple (S, δ, λ) where S : C → C is a functor and δ : S •→ IdC and λ : S

•→ S ◦ S
make following diagrams commute:

S(X) S2(X)

S(X)

λX

IdS(X)

δS(X)

S(X) S2(X)

S(X)

λX

IdS(X)

S(δX)

S(X) S2(X)

S2(X) S3(X)

λX

λX λS(X)

S(λX)

An S-coalgebra is a pair (X,h) where X is an object of C and h ∈ C(X,S(X))
satisfies the following commutations

X S(X)

X

h

IdX
δX

X S(X)

S(X) S2(X)

h

h λX

S(h)

and a morphism from a coalgebra (X,h) to a coalgebra (Y, k) is an f ∈ C(X,Y )
such that the following diagram commutes

X Y

S(X) S(Y )

f

h k

S(f)

This defines a the category of coalgebras of the comonad S, or Eilenberg-Moore
category of S, denoted as CS . We use the notation P = (P , hP ) for an object
of CS .

If X is an object of C then (S(X), λX) is a coalgebra of S, it is the cofree
coalgebra generated by X.
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Exercise C.4.5. Consider the category whose objects are the pairs (P, d) where
P is an object of CS and d ∈ C(P ,X). A morphism (P, d) → (Q, e) in that
category is an f ∈ CS(P,Q) such that e ◦ f = d. This is the category of
coalgebras above X. Prove that ((S(X), λX), δX) is the terminal object of that
category, justifying the terminology “cofree” for this coalgebra above X.

Lemma C.4.6. The function

φX,Y : CS((S(X), λX), (S(Y ), λY ))→ C(S(X), Y )

f 7→ δY ◦ f

is natural in X,Y ∈ Obj(C) and is a bijection.

Proof sketch. Naturality results from that of δ. Given g ∈ C(S(X), Y ) we
define ψ(g) = S(g) ◦ λX ∈ C(S(X), S(Y )). One proves then that ψ(g) ∈
CS((S(X), λX), (S(Y ), λY )) and that ψ is the inverse of φX,Y using the defini-
tion of a comonad and the definition of the Eilenberg Moore category.

This lemma motivates the definition of the Klesili category CS of the comonad
S: its objects are those of C and CS(X,Y ) = C(S(X), Y ). In that category the
identity at X is δX and given f ∈ CS(X,Y ) and g ∈ CS(Y, Z), their composition
g ◦ f ∈ CS(Y, Z) is given by

g ◦ f = g ◦ S(f) ◦ λX

and then using Lemma C.4.6 one proves that one defines a functor E : CS → CS
by E(X) = ((S(X), λX) and, for f ∈ CS(X,Y ), by E(f) = S(f) ◦ λX and that
this functor is full and faithful. In other words CS can be understood as full
subcategory of C, the category of cofree coalgebras.

C.5 Monoidal categories
Whereas a cartesian category is a category which enjoys a certain property
(existence of limits for a class of diagrams), a monoidal category is not just
a category, but a category equipped with an additional structure, exactly as
a monoid is not just a set but a set equipped with an additional (algebraic)
structure.

A symmetric monoidal category (SMC) is a structure (L, I,⊠, λ⊠, ρ⊠, α⊠, σ⊠)
where

• L is a category,

• ⊠ : L2 → L is a functor and I ∈ Obj(L),

• λ⊠X ∈ L(I⊠X,X) and ρ⊠X ∈ L(X ⊠ I, X) are isos which are natural in X,

• α⊠
X1,X2,X3

∈ L((X1⊠X2)⊠X3, X1⊠(X2⊠X3)) is an iso which is natural
in X1, X2 and X3,
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• and σ⊠
X1,X2

∈ L(X1⊠X2, X2⊠X1) is an iso which is natural in X1 and
X2.

Moreover, the following properties are required. First the two morphisms
λ⊠I , ρ

⊠
I ∈ L(I⊠ I, I) must be equal. Next, the following diagrams must commute.

(I⊠X1)⊠X2 I⊠(X1⊠X2)

X1⊠X2

α⊠
I,X1,X2

λ⊠
X1

⊠X2

λ⊠
X1 ⊠X2

(X1⊠ I)⊠X2 X1⊠(I⊠X2)

X1⊠X2

α⊠
X1,I,X2

ρ⊠X1
⊠X2

X1 ⊠λ⊠
X2

(X1⊠X2)⊠ I X1⊠(X2⊠ I)

X1⊠X2

α⊠
X1,X2,I

ρ⊠X1 ⊠X2

X1 ⊠ ρ⊠X2

((X1⊠X2)⊠X3)⊠X4 (X1⊠X2)⊠(X3⊠X4)

(X1⊠(X2⊠X3))⊠X4

X1⊠((X2⊠X3)⊠X4) X1⊠(X2⊠(X3⊠X4))

α⊠
X1 ⊠X2,X3,X4

α⊠
X1,X2,X3

⊠X4

α⊠
X1,X2,X3 ⊠X4

α⊠
X1,X2 ⊠X3,X4

X1 ⊠α⊠
X2,X3,X4

I⊠X X ⊠ I

X

σ⊠
I,X

λ⊠
X

ρ⊠X

(X1⊠X2)⊠X3 X1⊠(X2⊠X3)

(X2⊠X1)⊠X3 (X2⊠X3)⊠X1

X2⊠(X1⊠X3) X2⊠(X3⊠X1)

α⊠
X1,X2,X3

σ⊠
X1,X2

⊠X3 σ⊠
X1,X2 ⊠X3

α⊠
X2,X1,X3

α⊠
X2,X3,X1

X2 ⊠σ⊠
X1,X3
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X1⊠X2 X2⊠X1

X1⊠X2

σ⊠
X1,X2

X1 ⊠X2

σ⊠
X2,X1

We define a notion of “monoidal tree” by the following syntax:

τ, τ1, · · · := ∗ | n | ⟨τ1, τ2⟩

where n is an integer. We define the degree of a monoidal tree as the number
of its integer leaves, in other words

deg(∗) = 0

deg(n) = 1

deg(⟨τ1, τ2⟩) = deg(τ1) + deg(τ2) .

We say that a monoidal tree of degree n is well-formed if the set of its labels is
{1, . . . , n}.

Given a well-formed monoidal tree τ of degree n and a sequence
−→
X =

(X1, . . . , Xk) of objects of L with k ≥ n, we can define an object T⊠
τ (
−→
X ) of

L as follows:

T⊠
∗ (
−→
X ) = I

T⊠
i (
−→
X ) = Xi

T⊠
⟨τ1,τ2⟩(

−→
X ) = T⊠

τ1(
−→
X )⊠T⊠

τ2(
−→
X ) .

Then, given two well-formed monoidal trees τ1 and τ2 of degree n and a se-
quence

−→
X = (X1, . . . , Xn) of objects of L, it is possible, using the natural trans-

formations λ⊠, ρ⊠, α⊠ and σ⊠, to define isomorphisms in L(T⊠
τ1(
−→
X ),T⊠

τ2(
−→
X )).

The coherence diagrams above allow to prove that all these morphisms are ac-
tually equal: this is Mac Lane’s coherence theorem. We use φ⊠

τ1,τ2(
−→
X ) to denote

this iso. Of course we have φ⊠
τ,τ (
−→
X ) = Id and φ⊠

τ2,τ3(
−→
X )φ⊠

τ1,τ2(
−→
X ) = φ⊠

τ1,τ3(
−→
X ).

Exercise C.5.1. Prove that any cartesian category has a canonical structure of
monoidal category, with & as monoidal bifunctor.

C.5.1 Commutative comonoids
Definition C.5.2. In a SMC L (with the usual notations), a commutative
comonoid is a tuple C = (C,wC , cC) where C ∈ L, wC ∈ L(C, 1) and cC ∈
L(C,C ⊗ C) are such that the following diagrams commute.

C C ⊗ C

1⊗ C

cC

(λC)−1
wC⊗C

C C ⊗ C

C ⊗ C

cC

cC
σC,C
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C C ⊗ C

C ⊗ C (C ⊗ C)⊗ C C ⊗ (C ⊗ C)

cC

cC C⊗cC

cC⊗C αC,C,C

The category L⊗ of commutative comonoids has these tuples as objects, and an
element of L⊗(C,D) is an f ∈ L(C,D) such that the two following diagrams
commute

C D

1

f

wC
wD

C D

C ⊗ C D ⊗D

cC

f

cD

f⊗f

Theorem C.5.3. For any SMC L the category L⊗ is cartesian. The terminal
object is (1, Id1, (λ1)

−1) (remember that λ1 = ρ1) simply denoted as 1 and for
any object C the unique morphism C → 1 is wC . The cartesian product of
C0, C1 ∈ L⊗ is the object C0 ⊗ C1 of L⊗ such that C0 ⊗ C1 = C0 ⊗ C1 and the
structure maps are defined as

C0 ⊗ C1 1⊗ 1 1

C0 ⊗ C1 C0 ⊗ C0 ⊗ C1 ⊗ C1 C0 ⊗ C1 ⊗ C0 ⊗ C1

wC0
⊗wC1 λ1

cC0
⊗cC1 σ2,3

The projections pr⊗i ∈ L⊗(C0 ⊗ C1, Ci) are given by

C0 ⊗ C1 1⊗ C1 C1

C0 ⊗ C1 C0 ⊗ 1 C0

wC0
⊗C1 λC1

C0⊗wC1
ρC0

.

The proof is straightforward. In a commutative monoid M , multiplication
is a monoid morphism M ×M →M . The following is in the vein of this simple
observation.

Lemma C.5.4. If C ∈ L⊗ then wC ∈ L⊗(C, 1) and cC ∈ L⊗(C,C ⊗ C).

Proof. The second statement amounts to the following commutation

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C ⊗ C C ⊗ C ⊗ C ⊗ C

cC

cC cC⊗cC

cC⊗cC σ2,3

which results from the commutativity of C. The first statement is similarly
trivial.
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1-step reduct, 217
2-category, 230
N model of Λ∗, 180
ϵ, 213
A ▷◁ B, 224
A ↾a, 217
B model, 200
B-weigth, 200
S model, 198
!-cycles, 205
→-minimal, 218, 220
s(γ), 213
t(γ), 214
ps(π), 61
?-cycles, 205
a← b, 217
a→∗ b, 217
a→+ b, 217
a→= b, 217
a→ b, 217
a ≃ b, 217
ab∗-form, 182

Abstract reduction system (ARS), 217
Active, 10
Active and passive parts of a path, 175
Active node, 71
Acyclic graph, 215, 216
Acyclic proof structure, 66
Admissible, 12
Algebra of a monad, 234
Arity, 9, 10
Arrow, 213
Arrow crossed by a path, 215
Atomic formulas, 9
Auxiliary doors of a box, 102
Axiom reduction, 72

Balanced stack, 200
Binary completeness, 144
Bistack, 200
Border of a box, 102
box

Box
content, 100

Box level, 101
Box stack, 200
Box tree, 101, 101
Bridge, 81

Cartesian closed categories, 232
Cartesian product, 231
Category of paths of G, 214
Closed, 56
Closed path, 214
Composable edges, 213
Composable paths, 214
Composition of paths, 214
Conclusion, 10, 57
Conclusion arrow, 58
Conclusion node, 57
Conclusion sequence, 57
Conclusion sequent of a proof struc-

ture, 60
Confluent, 218, 219, 221
Connected component, 215
Connected components, 216
Connected graph, 215, 216
Connected nodes, 215
Connected proof net with jumps, 87
Connected sequential structure, 79
Consistent paths, 174
Content of a box, 102
Context, 10
Convergent, 74, 76, 220
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Correctness criteria, 67
Costrong, 82
Coweak, 82
Curryfication, 232
Cycle, 56, 215
Cyclic path, 215

Decreasing, 221, 221
Derivable, 13
Derivation, 12
Descent path, 59
diagram, 230
Diamond property, 218, 219
Directed acyclic graph, 57, 101, 216
Directed cycle, 216
Directed path, 59, 216
Discrete category, 231
Disjoint paths, 215
Dual, 9
Dynamic algebra, 179

Edge, 56, 213
Edge crossed by a path, 215
Eilenberg-Moore category, 234
Elementarily composable paths, 215
Elementary cycle, 215
Elementary path, 215
Empty graph, 213
Empty proof structure, 58
Equalizer, 231
Equivalent, 16
Evaluation map, 232
Execution formula, 173
Execution path, 173
Exponential token, 197
Extensional expansion of A, 14

Final ?-cycle, 206
Finally separing, 196
Finite reduction sequence, 217
Formulas, 9
Fragment, 23
Free algebras of a monad, 234
Full descent path, 59
Functors, 228

Geometry of interaction, 173

GoI situation, 174
Graph, 56, 213
Graph isomorphism, 213
Graph morphism, 213

Hilbert space model, 189
Holes, 12

Identity expansion of A, 14
Incident arrow, 213
Incoming arrow, 57, 213
Increasing, 221, 222
Initial ?-cycle, 206
Initial jump function, 87
Initial node, 87
Initially separing, 196
Interaction Abstract Machine, 173
Interaction model, 198
Interaction stack, 197
Interaction token, 197
Interface, 57
Interface node, 190
Interface nodes, 71
Interface of a reduction step, 71
Internal arrow, 58
Internal hom, 232
Internal hom object, 232
Internal node, 57, 214
Involutive category, 215
isomorphism

Isomorphism
of proof structures, 58

Jump function, 87

Kleisli category, 234

Legal path, 174, 209
Length, 214
Level of a box, 102
Limiting projective cone, 230
Linear function, 150
Locally commute, 224, 224
Locally confluent, 218, 219, 221, 222,

224

Main door of a box, 102
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Modalities, 10
Monomial, 188
Multiplicative reduction, 72

Natural transformations, 229
Negative, 10
Node, 213
Normal form, 218
Normal path, 176

Occurrence of a node, 214
Open path, 214
Open proof, 12, 93
Outgoing arrow, 57, 213

Passive, 10
path

Path
in a proof structure, 59

Path, 59, 213
Path between two nodes, 214
Paths, 56
Persistent paths, 173
Pier, 81
Positive, 9
Prefix, 214
Premise, 57
Premise node, 57
Premises, 10
Principal, 10
Projection, 231
Projective cone, 230
Projective limits, 230
Promotion box, 99, 101
proof net

Proof net
multiplicative, 66

Proof net with jumps, 87
proof structure

Proof structure
multiplicative, 57

Proof structure
multiplicative-exponential, 101

Proof structure of a box, 102
Proof structure with jumps, 87
Proper cycle, 81

Provable, 12

Quasi-commute, 224, 224

Redex in a proof structure, 69, 72
Reduct of a redex in a proof structure,

69
Reduction of multiplicative proof struc-

tures, 72
Reduction sequence, 217
Regular path, 183
Regular path, 173
Restriction, 217
Reverse edge, 214

Sequent, 10
Sequential structure, 91
Sequentialization, 77
Sharing graphs, 174
Sharing reduction, 174
Simple, 56
Simple path, 215
Simulation, 223, 223
Skeleton, 52
Source, 213
Special cut for a path, 177
Special reduction, 178
Splitting ⊗-node, 78, 92
Splitting `-node, 93
Stable functions, 147
Straight cycle, 195
Straight paths, 174
Strict simulation, 223, 223
Strong, 82
Strongly consistent, 49
Strongly normalizing, 220, 220–224
Sub-commute, 224, 224
Sub-confluent, 218, 219, 224
Subgraph, 213
Subpath, 214
Suffix, 214
Sum of graphs, 213
Sum of proof structures, 58
Switching, 65
Switching cycle, 66, 80
Switching graph, 65, 80
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Switching path, 67, 80
Switching paths, 56

Target, 213, 214
Terminal arrow, 58
Terminal node, 57
Terminal objects, 230
Top level, 101
Trace of stable function, 149
Type, 59
Typed proof structure, 60
Typing of a proof structure, 59

Undirected path, 214
Unique normal form, 219, 219, 221,

223
Unordered proof structure, 57

Virtual cuts, 203

W.b.p., 203
Weak, 82
Weakly consistent, 50
Weakly decreasing, 221, 221
Weakly normalizing, 220, 221, 222
Weight, 182
Well balanced paths, 203
Well founded, 220, 220
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